We study the computational complexity of two well-known graph transversal problems, namely Subset Feedback Vertex Set and Subset Odd Cycle Transversal, by restricting the input to $H$-free graphs, that is, to graphs that do not contain some fixed graph~$H$ as an induced subgraph. By combining known and new results, we determine the computational complexity of both problems on $H$-free graphs for every graph $H$ except when $H=sP_1+P_4$ for some $s\geq 1$. As part of our approach, we introduce the Subset Vertex Cover problem and prove that it is polynomial-time solvable for $(sP_1+P_4)$-free graphs for every $s\geq 1$.
Graph-modification problems, where we modify a graph by adding or deleting vertices or edges or contracting edges to obtain a graph in a {\it simpler} class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and parameterized complexity. Specifically, graph-deletion problems, where one needs to delete a small number of vertices to make the resulting graph to belong to a given non-trivial hereditary graph class, captures several well-studied problems including {\sc Vertex Cover}, {\sc Feedback Vertex Set}, {\sc Odd Cycle Transveral}, {\sc Cluster Vertex Deletion}, and {\sc Perfect Deletion}. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. We initiate a study of a natural variation of the problem of deletion to {\it scattered graph classes}. We want to delete at most $k$ vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. As our main result, we show that this problem is fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the finite number of graph classes is known to be FPT and the properties that a graph belongs to any of the classes is expressible in Counting Monodic Second Order (CMSO) logic. While this is shown using some black box theorems in parameterized complexity, we give a faster FPT algorithm when each of the graph classes has a finite forbidden set.
The Burling sequence is a sequence of triangle-free graphs of increasing chromatic number. Each of them is isomorphic to the intersection graph of a set of axis-parallel boxes in $R^3$. These graphs were also proved to have other geometrical representations: intersection graphs of line segments in the plane, and intersection graphs of frames, where a frame is the boundary of an axis-aligned rectangle in the plane. We call Burling graph every graph that is an induced subgraph of some graph in the Burling sequence. We give five new equivalent ways to define Burling graphs. Three of them are geometrical, one is of a more graph-theoretical flavour and one is more axiomatic.
The Burling sequence is a sequence of triangle-free graphs of unbounded chromatic number. The class of Burling graphs consists of all the induced subgraphs of the graphs of this sequence. In the first and second parts of this work, we introduced derived graphs, a class of graphs, equal to the class of Burling graphs, and proved several geometric and structural results about them. In this third part, we use those results to find some Burling and non-Burling graphs, and we see some applications of this in the theory of $\chi$-boundedness. In particular, we show that several graphs, like $ K_5 $, some series-parallel graphs that we call necklaces, and some other graphs are not weakly pervasive.
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.
Distance based knowledge graph embedding methods show promising results on link prediction task, on which two topics have been widely studied: one is the ability to handle complex relations, such as N-to-1, 1-to-N and N-to-N, the other is to encode various relation patterns, such as symmetry/antisymmetry. However, the existing methods fail to solve these two problems at the same time, which leads to unsatisfactory results. To mitigate this problem, we propose PairRE, a model with paired vectors for each relation representation. The paired vectors enable an adaptive adjustment of the margin in loss function to fit for complex relations. Besides, PairRE is capable of encoding three important relation patterns, symmetry/antisymmetry, inverse and composition. Given simple constraints on relation representations, PairRE can encode subrelation further. Experiments on link prediction benchmarks demonstrate the proposed key capabilities of PairRE. Moreover, We set a new state-of-the-art on two knowledge graph datasets of the challenging Open Graph Benchmark.
Graph representation learning has recently been applied to a broad spectrum of problems ranging from computer graphics and chemistry to high energy physics and social media. The popularity of graph neural networks has sparked interest, both in academia and in industry, in developing methods that scale to very large graphs such as Facebook or Twitter social networks. In most of these approaches, the computational cost is alleviated by a sampling strategy retaining a subset of node neighbors or subgraphs at training time. In this paper we propose a new, efficient and scalable graph deep learning architecture which sidesteps the need for graph sampling by using graph convolutional filters of different size that are amenable to efficient precomputation, allowing extremely fast training and inference. Our architecture allows using different local graph operators (e.g. motif-induced adjacency matrices or Personalized Page Rank diffusion matrix) to best suit the task at hand. We conduct extensive experimental evaluation on various open benchmarks and show that our approach is competitive with other state-of-the-art architectures, while requiring a fraction of the training and inference time.
Question answering over knowledge graphs (KGQA) has evolved from simple single-fact questions to complex questions that require graph traversal and aggregation. We propose a novel approach for complex KGQA that uses unsupervised message passing, which propagates confidence scores obtained by parsing an input question and matching terms in the knowledge graph to a set of possible answers. First, we identify entity, relationship, and class names mentioned in a natural language question, and map these to their counterparts in the graph. Then, the confidence scores of these mappings propagate through the graph structure to locate the answer entities. Finally, these are aggregated depending on the identified question type. This approach can be efficiently implemented as a series of sparse matrix multiplications mimicking joins over small local subgraphs. Our evaluation results show that the proposed approach outperforms the state-of-the-art on the LC-QuAD benchmark. Moreover, we show that the performance of the approach depends only on the quality of the question interpretation results, i.e., given a correct relevance score distribution, our approach always produces a correct answer ranking. Our error analysis reveals correct answers missing from the benchmark dataset and inconsistencies in the DBpedia knowledge graph. Finally, we provide a comprehensive evaluation of the proposed approach accompanied with an ablation study and an error analysis, which showcase the pitfalls for each of the question answering components in more detail.
Link prediction is critical for the application of incomplete knowledge graph (KG) in the downstream tasks. As a family of effective approaches for link predictions, embedding methods try to learn low-rank representations for both entities and relations such that the bilinear form defined therein is a well-behaved scoring function. Despite of their successful performances, existing bilinear forms overlook the modeling of relation compositions, resulting in lacks of interpretability for reasoning on KG. To fulfill this gap, we propose a new model called DihEdral, named after dihedral symmetry group. This new model learns knowledge graph embeddings that can capture relation compositions by nature. Furthermore, our approach models the relation embeddings parametrized by discrete values, thereby decrease the solution space drastically. Our experiments show that DihEdral is able to capture all desired properties such as (skew-) symmetry, inversion and (non-) Abelian composition, and outperforms existing bilinear form based approach and is comparable to or better than deep learning models such as ConvE.
Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.
A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.