亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum resistance is vital for emerging cryptographic systems as quantum technologies continue to advance towards large-scale, fault-tolerant quantum computers. Resistance may be offered by quantum key distribution (QKD), which provides information-theoretic security using quantum states of photons, but may be limited by transmission loss at long distances. An alternative approach uses classical means and is conjectured to be resistant to quantum attacks, so-called post-quantum cryptography (PQC), but it is yet to be rigorously proven, and its current implementations are computationally expensive. To overcome the security and performance challenges present in each, here we develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network. In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach. Furthermore, we present a method for analyzing the security of hybrid protocols in key distribution networks. Our hybrid approach paves the way for joint quantum-classical communication networks, which leverage the advantages of both QKD and PQC and can be tailored to the requirements of various practical networks.

相關內容

Combining microstructural mechanical models with experimental data enhances our understanding of the mechanics of soft tissue, such as tendons. In previous work, a Bayesian framework was used to infer constitutive parameters from uniaxial stress-strain experiments on horse tendons, specifically the superficial digital flexor tendon (SDFT) and common digital extensor tendon (CDET), on a per-experiment basis. Here, we extend this analysis to investigate the natural variation of these parameters across a population of horses. Using a Bayesian mixed effects model, we infer population distributions of these parameters. Given that the chosen hyperelastic model does not account for tendon damage, careful data selection is necessary. Avoiding ad hoc methods, we introduce a hierarchical Bayesian data selection method. This two-stage approach selects data per experiment, and integrates data weightings into the Bayesian mixed effects model. Our results indicate that the CDET is stiffer than the SDFT, likely due to a higher collagen volume fraction. The modes of the parameter distributions yield estimates of the product of the collagen volume fraction and Young's modulus as 811.5 MPa for the SDFT and 1430.2 MPa for the CDET. This suggests that positional tendons have stiffer collagen fibrils and/or higher collagen volume density than energy-storing tendons.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

The use of model order reduction techniques in combination with ensemble-based methods for estimating the state of systems described by nonlinear partial differential equations has been of great interest in recent years in the data assimilation community. Methods such as the multi-fidelity ensemble Kalman filter (MF-EnKF) and the multi-level ensemble Kalman filter (ML-EnKF) are recognized as state-of-the-art techniques. However, in many cases, the construction of low-fidelity models in an offline stage, before solving the data assimilation problem, prevents them from being both accurate and computationally efficient. In our work, we investigate the use of adaptive reduced basis techniques in which the approximation space is modified online based on the information that is extracted from a limited number of full order solutions and that is carried by the past models. This allows to simultaneously ensure good accuracy and low cost for the employed models and thus improve the performance of the multi-fidelity and multi-level methods.

UAV's are becoming popular for various object search applications in agriculture, however they usually use time-consuming row-by-row flight paths. This paper presents a deep-reinforcement-learning method for path planning to efficiently localize objects of interest using UAVs with a minimal flight-path length. The method uses some global prior knowledge with uncertain object locations and limited resolution in combination with a local object map created using the output of an object detection network. The search policy could be learned using deep Q-learning. We trained the agent in simulation, allowing thorough evaluation of the object distribution, typical errors in the perception system and prior knowledge, and different stopping criteria. When objects were non-uniformly distributed over the field, the agent found the objects quicker than a row-by-row flight path, showing that it learns to exploit the distribution of objects. Detection errors and quality of prior knowledge had only minor effect on the performance, indicating that the learned search policy was robust to errors in the perception system and did not need detailed prior knowledge. Without prior knowledge, the learned policy was still comparable in performance to a row-by-row flight path. Finally, we demonstrated that it is possible to learn the appropriate moment to end the search task. The applicability of the approach for object search on a real drone was comprehensively discussed and evaluated. Overall, we conclude that the learned search policy increased the efficiency of finding objects using a UAV, and can be applied in real-world conditions when the specified assumptions are met.

Most existing tests in the literature for model checking do not work in high dimension settings due to challenges arising from the "curse of dimensionality", or dependencies on the normality of parameter estimators. To address these challenges, we proposed a new goodness of fit test based on random projections for generalized linear models, when the dimension of covariates may substantially exceed the sample size. The tests only require the convergence rate of parameter estimators to derive the limiting distribution. The growing rate of the dimension is allowed to be of exponential order in relation to the sample size. As random projection converts covariates to one-dimensional space, our tests can detect the local alternative departing from the null at the rate of $n^{-1/2}h^{-1/4}$ where $h$ is the bandwidth, and $n$ is the sample size. This sensitive rate is not related to the dimension of covariates, and thus the "curse of dimensionality" for our tests would be largely alleviated. An interesting and unexpected result is that for randomly chosen projections, the resulting test statistics can be asymptotic independent. We then proposed combination methods to enhance the power performance of the tests. Detailed simulation studies and a real data analysis are conducted to illustrate the effectiveness of our methodology.

Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, Multi-Shield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. Multi-Shield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that Multi-Shield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.

We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.

As software pervades more and more areas of our professional and personal lives, there is an ever-increasing need to maintain software, and for programmers to be able to efficiently write and understand program code. In the first study of its kind, we analyze fixation-related potentials (FRPs) to explore the online processing of program code patterns that are ambiguous to programmers, but not the computer (so-called atoms of confusion), and their underlying neurocognitive mechanisms in an ecologically valid setting. Relative to unambiguous counterparts in program code, atoms of confusion elicit a late frontal positivity with a duration of about 400 to 700 ms after first looking at the atom of confusion. As the frontal positivity shows high resemblance with an event-related potential (ERP) component found during natural language processing that is elicited by unexpected but plausible words in sentence context, we take these data to suggest that the brain engages similar neurocognitive mechanisms in response to unexpected and informative inputs in program code and in natural language. In both domains, these inputs lead to an update of a comprehender's situation model that is essential for information extraction from a quickly unfolding input.

Uplift modeling and Heterogeneous Treatment Effect (HTE) estimation aim at predicting the causal effect of an action, such as a medical treatment or a marketing campaign on a specific individual. In this paper, we focus on data from Randomized Controlled Experiments which guarantee causal interpretation of the outcomes. Class and treatment imbalance are important problems in uplift modeling/HTE, but classical undersampling or oversampling based approaches are hard to apply in this case since they distort the predicted effect. Calibration methods have been proposed in the past, however, they do not guarantee correct predictions. In this work, we propose an approach alternative to undersampling, based on flipping the class value of selected records. We show that the proposed approach does not distort the predicted effect and does not require calibration. The method is especially useful for models based on class variable transformation (modified outcome models). We address those models separately, designing a transformation scheme which guarantees correct predictions and addresses also the problem of treatment imbalance which is especially important for those models. Experiments fully confirm our theoretical results. Additionally, we demonstrate that our method is a viable alternative also for standard classification problems.

Leveraging the large body of work devoted in recent years to describe redundancy and synergy in multivariate interactions among random variables, we propose a novel approach to quantify cooperative effects in feature importance, one of the most used techniques for explainable artificial intelligence. In particular, we propose an adaptive version of a well-known metric of feature importance, named Leave One Covariate Out (LOCO), to disentangle high-order effects involving a given input feature in regression problems. LOCO is the reduction of the prediction error when the feature under consideration is added to the set of all the features used for regression. Instead of calculating the LOCO using all the features at hand, as in its standard version, our method searches for the multiplet of features that maximize LOCO and for the one that minimize it. This provides a decomposition of the LOCO as the sum of a two-body component and higher-order components (redundant and synergistic), also highlighting the features that contribute to building these high-order effects alongside the driving feature. We report the application to proton/pion discrimination from simulated detector measures by GEANT.

北京阿比特科技有限公司