The Object Constraint Language (OCL) is a declarative language that adds constraints and object query expressions to MOF models. Despite its potential to provide precision and conciseness to UML models, the unfamiliar syntax of OCL has hindered its adoption. Recent advancements in LLMs, such as GPT-3, have shown their capability in many NLP tasks, including semantic parsing and text generation. Codex, a GPT-3 descendant, has been fine-tuned on publicly available code from GitHub and can generate code in many programming languages. We investigate the reliability of OCL constraints generated by Codex from natural language specifications. To achieve this, we compiled a dataset of 15 UML models and 168 specifications and crafted a prompt template with slots to populate with UML information and the target task, using both zero- and few-shot learning methods. By measuring the syntactic validity and execution accuracy metrics of the generated OCL constraints, we found that enriching the prompts with UML information and enabling few-shot learning increases the reliability of the generated OCL constraints. Furthermore, the results reveal a close similarity based on sentence embedding between the generated OCL constraints and the human-written ones in the ground truth, implying a level of clarity and understandability in the generated OCL constraints by Codex.
In the domain of audio processing, Transfer Learning has facilitated the rise of Self-Supervised Learning and Zero-Shot Learning techniques. These approaches have led to the development of versatile models capable of tackling a wide array of tasks, while delivering state-of-the-art performance. However, current models inherently lack the capacity to produce the requisite language for open-ended tasks, such as Audio Captioning or Audio Question & Answering. We introduce Pengi, a novel Audio Language Model that leverages Transfer Learning by framing all audio tasks as text-generation tasks. It takes as input, an audio recording, and text, and generates free-form text as output. The input audio is represented as a sequence of continuous embeddings by an audio encoder. A text encoder does the same for the corresponding text input. Both sequences are combined as a prefix to prompt a pre-trained frozen language model. The unified architecture of Pengi enables open-ended tasks and close-ended tasks without any additional fine-tuning or task-specific extensions. When evaluated on 22 downstream tasks, our approach yields state-of-the-art performance in several of them. Our results show that connecting language models with audio models is a major step towards general-purpose audio understanding
Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models. Given the inherent ambiguity present in natural language, it is intuitive to consider the possible advantages of prompting with less ambiguous prompt styles, such as the use of pseudo-code. In this paper we explore if prompting via pseudo-code instructions helps improve the performance of pre-trained language models. We manually create a dataset of pseudo-code prompts for 132 different tasks spanning classification, QA and generative language tasks, sourced from the Super-NaturalInstructions dataset. Using these prompts along with their counterparts in natural language, we study their performance on two LLM families - BLOOM and CodeGen. Our experiments show that using pseudo-code instructions leads to better results, with an average increase (absolute) of 7-16 points in F1 scores for classification tasks and an improvement (relative) of 12-38% in aggregate ROUGE scores across all tasks. We include detailed ablation studies which indicate that code comments, docstrings, and the structural clues encoded in pseudo-code all contribute towards the improvement in performance. To the best of our knowledge our work is the first to demonstrate how pseudo-code prompts can be helpful in improving the performance of pre-trained LMs.
To extend the scope of coding queries to more realistic settings, we propose ODEX, the first Open-Domain EXecution-based natural language (NL) to Python code generation dataset. ODEX has 945 NL-Code pairs spanning 79 diverse libraries, along with 1,707 human-written test cases for execution. Our NL-Code pairs are harvested from StackOverflow forums to encourage natural and practical coding queries. Moreover, ODEX supports four natural languages as intents, in English, Spanish, Japanese, and Russian. ODEX unveils intriguing behavioral differences among top-performing code language models (LM). While CODEX achieves better overall results, CODEGEN improves effectively via scaling -- CODEGEN 6.1B performs comparably with CODEX 12B. Both models show substantial gaps between open and closed domains, but CODEGEN gaps tend to decrease with model size while CODEX gaps increase. We release ODEX to facilitate research into open-domain problems for the code generation community.
Recent advancements in Text-to-Image (T2I) generative models have yielded impressive results in generating high-fidelity images based on consistent text prompts. However, there is a growing interest in exploring the potential of these models for more diverse reference-based image manipulation tasks that require spatial understanding and visual context. Previous approaches have achieved this by incorporating additional control modules or fine-tuning the generative models specifically for each task until convergence. In this paper, we propose a different perspective. We conjecture that current large-scale T2I generative models already possess the capability to perform these tasks but are not fully activated within the standard generation process. To unlock these capabilities, we introduce a unified Prompt-Guided In-Context inpainting (PGIC) framework, which leverages large-scale T2I models to re-formulate and solve reference-guided image manipulations. In the PGIC framework, the reference and masked target are stitched together as a new input for the generative models, enabling the filling of masked regions as producing final results. Furthermore, we demonstrate that the self-attention modules in T2I models are well-suited for establishing spatial correlations and efficiently addressing challenging reference-guided manipulations. These large T2I models can be effectively driven by task-specific prompts with minimal training cost or even with frozen backbones. We synthetically evaluate the effectiveness of the proposed PGIC framework across various tasks, including reference-guided image inpainting, faithful inpainting, outpainting, local super-resolution, and novel view synthesis. Our results show that PGIC achieves significantly better performance while requiring less computation compared to other fine-tuning based approaches.
As AI-powered code generation tools such as GitHub Copilot become popular, it is crucial to understand software developers' trust in AI tools -- a key factor for tool adoption and responsible usage. However, we know little about how developers build trust with AI, nor do we understand how to design the interface of generative AI systems to facilitate their appropriate levels of trust. In this paper, we describe findings from a two-stage qualitative investigation. We first interviewed 17 developers to contextualize their notions of trust and understand their challenges in building appropriate trust in AI code generation tools. We surfaced three main challenges -- including building appropriate expectations, configuring AI tools, and validating AI suggestions. To address these challenges, we conducted a design probe study in the second stage to explore design concepts that support developers' trust-building process by 1) communicating AI performance to help users set proper expectations, 2) allowing users to configure AI by setting and adjusting preferences, and 3) offering indicators of model mechanism to support evaluation of AI suggestions. We gathered developers' feedback on how these design concepts can help them build appropriate trust in AI-powered code generation tools, as well as potential risks in design. These findings inform our proposed design recommendations on how to design for trust in AI-powered code generation tools.
Generalization beyond in-domain experience to out-of-distribution data is of paramount significance in the AI domain. Of late, state-of-the-art Visual Question Answering (VQA) models have shown impressive performance on in-domain data, partially due to the language priors bias which, however, hinders the generalization ability in practice. This paper attempts to provide new insights into the influence of language modality on VQA performance from an empirical study perspective. To achieve this, we conducted a series of experiments on six models. The results of these experiments revealed that, 1) apart from prior bias caused by question types, there is a notable influence of postfix-related bias in inducing biases, and 2) training VQA models with word-sequence-related variant questions demonstrated improved performance on the out-of-distribution benchmark, and the LXMERT even achieved a 10-point gain without adopting any debiasing methods. We delved into the underlying reasons behind these experimental results and put forward some simple proposals to reduce the models' dependency on language priors. The experimental results demonstrated the effectiveness of our proposed method in improving performance on the out-of-distribution benchmark, VQA-CPv2. We hope this study can inspire novel insights for future research on designing bias-reduction approaches.
Natural language processing (NLP) researchers develop models of grammar, meaning and communication based on written text. Due to task and data differences, what is considered text can vary substantially across studies. A conceptual framework for systematically capturing these differences is lacking. We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP. Towards that goal, we propose common terminology to discuss the production and transformation of textual data, and introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling. We apply this taxonomy to survey existing work that extends the notion of text beyond the conservative language-centered view. We outline key desiderata and challenges of the emerging inclusive approach to text in NLP, and suggest community-level reporting as a crucial next step to consolidate the discussion.
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.