亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Complicated first principles modelling and controller synthesis can be prohibitively slow and expensive for high-mix, low-volume products such as hydraulic excavators. Instead, in a data-driven approach, recorded trajectories from the real system can be used to train local model networks (LMNs), for which feedforward controllers are derived via feedback linearization. However, previous works required LMNs without zero dynamics for feedback linearization, which restricts the model structure and thus modelling capacity of LMNs. In this paper, we overcome this restriction by providing a criterion for when feedback linearization of LMNs with zero dynamics yields a valid controller. As a criterion we propose the bounded-input bounded-output stability of the resulting controller. In two additional contributions, we extend this approach to consider measured disturbance signals and multiple inputs and outputs. We illustrate the effectiveness of our contributions in a hydraulic excavator control application with hardware experiments. To this end, we train LMNs from recorded, noisy data and derive feedforward controllers used as part of a leveling assistance system on the excavator. In our experiments, incorporating disturbance signals and multiple inputs and outputs enhances tracking performance of the learned controller. A video of our experiments is available at //youtu.be/lrrWBx2ASaE.

相關內容

To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by almost all existing methods, such as CAA (Panickssery et al., 2024) or the direct use of SAE latents (Templeton et al., 2024). In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.

Rational design of next-generation functional materials relied on quantitative predictions of their electronic structures beyond single building blocks. First-principles quantum mechanical (QM) modeling became infeasible as the size of a material grew beyond hundreds of atoms. In this study, we developed a new computational tool integrating fragment-based graph neural networks (FBGNN) into the fragment-based many-body expansion (MBE) theory, referred to as FBGNN-MBE, and demonstrated its capacity to reproduce full-dimensional potential energy surfaces (FD-PES) for hierarchic chemical systems with manageable accuracy, complexity, and interpretability. In particular, we divided the entire system into basic building blocks (fragments), evaluated their single-fragment energies using a first-principles QM model and attacked many-fragment interactions using the structure-property relationships trained by FBGNNs. Our development of FBGNN-MBE demonstrated the potential of a new framework integrating deep learning models into fragment-based QM methods, and marked a significant step towards computationally aided design of large functional materials.

We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficient s in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.

Climate decision making is constrained by the complexity and inaccessibility of key information within lengthy, technical, and multi-lingual documents. Generative AI technologies offer a promising route for improving the accessibility of information contained within these documents, but suffer from limitations. These include (1) a tendency to hallucinate or mis-represent information, (2) difficulty in steering or guaranteeing properties of generated output, and (3) reduced performance in specific technical domains. To address these challenges, we introduce a novel evaluation framework with domain-specific dimensions tailored for climate-related documents. We then apply this framework to evaluate Retrieval-Augmented Generation (RAG) approaches and assess retrieval- and generation-quality within a prototype tool that answers questions about individual climate law and policy documents. In addition, we publish a human-annotated dataset and scalable automated evaluation tools, with the aim of facilitating broader adoption and robust assessment of these systems in the climate domain. Our findings highlight the key components of responsible deployment of RAG to enhance decision-making, while also providing insights into user experience (UX) considerations for safely deploying such systems to build trust with users in high-risk domains.

Causal disentanglement aims to learn about latent causal factors behind data, holding the promise to augment existing representation learning methods in terms of interpretability and extrapolation. Recent advances establish identifiability results assuming that interventions on (single) latent factors are available; however, it remains debatable whether such assumptions are reasonable due to the inherent nature of intervening on latent variables. Accordingly, we reconsider the fundamentals and ask what can be learned using just observational data. We provide a precise characterization of latent factors that can be identified in nonlinear causal models with additive Gaussian noise and linear mixing, without any interventions or graphical restrictions. In particular, we show that the causal variables can be identified up to a layer-wise transformation and that further disentanglement is not possible. We transform these theoretical results into a practical algorithm consisting of solving a quadratic program over the score estimation of the observed data. We provide simulation results to support our theoretical guarantees and demonstrate that our algorithm can derive meaningful causal representations from purely observational data.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司