This paper deals with unit root issues in time series analysis. It has been known for a long time that unit root tests may be flawed when a series although stationary has a root close to unity. That motivated recent papers dedicated to autoregressive processes where the bridge between stability and instability is expressed by means of time-varying coefficients. The process we consider has a companion matrix $A_{n}$ with spectral radius $\rho(A_{n}) < 1$ satisfying $\rho(A_{n}) \rightarrow 1$, a situation described as `nearly-unstable'. The question we investigate is: given an observed path supposed to come from a nearly-unstable process, is it possible to test for the `extent of instability', i.e. to test how close we are to the unit root? In this regard, we develop a strategy to evaluate $\alpha$ and to test for $\mathcal{H}_0 : ``\alpha = \alpha_0"$ against $\mathcal{H}_1 : ``\alpha > \alpha_0"$ when $\rho(A_{n})$ lies in an inner $O(n^{-\alpha})$-neighborhood of the unity, for some $0 < \alpha < 1$. Empirical evidence is given about the advantages of the flexibility induced by such a procedure compared to the common unit root tests. We also build a symmetric procedure for the usually left out situation where the dominant root lies around $-1$.
Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.
We develop a nonparametric test for deciding whether volatility of an asset follows a standard semimartingale process, with paths of finite quadratic variation, or a rough process with paths of infinite quadratic variation. The test utilizes the fact that volatility is rough if and only if volatility increments are negatively autocorrelated at high frequencies. It is based on the sample autocovariance of increments of spot volatility estimates computed from high-frequency asset return data. By showing a feasible CLT for this statistic under the null hypothesis of semimartingale volatility paths, we construct a test with fixed asymptotic size and an asymptotic power equal to one. The test is derived under very general conditions for the data-generating process. In particular, it is robust to jumps with arbitrary activity and to the presence of market microstructure noise. In an application of the test to SPY high-frequency data, we find evidence for rough volatility.
We introduce a new observational setting for Positive Unlabeled (PU) data where the observations at prediction time are also labeled. This occurs commonly in practice -- we argue that the additional information is important for prediction, and call this task "augmented PU prediction". We allow for labeling to be feature dependent. In such scenario, Bayes classifier and its risk is established and compared with a risk of a classifier which for unlabeled data is based only on predictors. We introduce several variants of the empirical Bayes rule in such scenario and investigate their performance. We emphasise dangers (and ease) of applying classical classification rule in the augmented PU scenario -- due to no preexisting studies, an unaware researcher is prone to skewing the obtained predictions. We conclude that the variant based on recently proposed variational autoencoder designed for PU scenario works on par or better than other considered variants and yields advantage over feature-only based methods in terms of accuracy for unlabeled samples.
This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.
Despite the wide usage of parametric point processes in theory and applications, a sound goodness-of-fit procedure to test whether a given parametric model is appropriate for data coming from a self-exciting point processes has been missing in the literature. In this work, we establish a bootstrap-based goodness-of-fit test which empirically works for all kinds of self-exciting point processes (and even beyond). In an infill-asymptotic setting we also prove its asymptotic consistency, albeit only in the particular case that the underlying point process is inhomogeneous Poisson.
The homogenization procedure developed here is conducted on a laminate with periodic space-time modulation on the fine scale: at leading order, this modulation creates convection in the low-wavelength regime if both parameters are modulated. However, if only one parameter is modulated, which is more realistic, this convective term disappears and one recovers a standard diffusion equation with effective homogeneous parameters; this does not describe the non-reciprocity and the propagation of the field observed from exact dispersion diagrams. This inconsistency is corrected here by considering second-order homogenization which results in a non-reciprocal propagation term that is proved to be non-zero for any laminate and verified via numerical simulation. The same methodology is also applied to the case when the density is modulated in the heat equation, leading therefore to a corrective advective term which cancels out non-reciprocity at the leading order but not at the second order.
This paper presents a fitted space-time finite element method for solving a parabolic advection-diffusion problem with a nonstationary interface. The jumping diffusion coefficient gives rise to the discontinuity of the spatial gradient of solution across the interface. We use the Banach-Necas-Babuska theorem to show the well-posedness of the continuous variational problem. A fully discrete finite-element based scheme is analyzed using the Galerkin method and unstructured fitted meshes. An optimal error estimate is established in a discrete energy norm under appropriate globally low but locally high regularity conditions. Some numerical results corroborate our theoretical results.
Floating-point accuracy is an important concern when developing numerical simulations or other compute-intensive codes. Tracking the introduction of numerical regression is often delayed until it provokes unexpected bug for the end-user. In this paper, we introduce Verificarlo CI, a continuous integration workflow for the numerical optimization and debugging of a code over the course of its development. We demonstrate applicability of Verificarlo CI on two test-case applications.
We prove the convergence of a damped Newton's method for the nonlinear system resulting from a discretization of the second boundary value problem for the Monge-Ampere equation. The boundary condition is enforced through the use of the notion of asymptotic cone. The differential operator is discretized based on a discrete analogue of the subdifferential.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.