Robots working in real environments need to adapt to unexpected changes to avoid failures. This is an open and complex challenge that requires robots to timely predict and identify the causes of failures to prevent them. In this paper, we present a causal method that will enable robots to predict when errors are likely to occur and prevent them from happening by executing a corrective action. First, we propose a causal-based method to detect the cause-effect relationships between task executions and their consequences by learning a causal Bayesian network (BN). The obtained model is transferred from simulated data to real scenarios to demonstrate the robustness and generalization of the obtained models. Based on the causal BN, the robot can predict if and why the executed action will succeed or not in its current state. Then, we introduce a novel method that finds the closest state alternatives through a contrastive Breadth-First-Search if the current action was predicted to fail. We evaluate our approach for the problem of stacking cubes in two cases; a) single stacks (stacking one cube) and; b) multiple stacks (stacking three cubes). In the single-stack case, our method was able to reduce the error rate by 97%. We also show that our approach can scale to capture multiple actions in one model, allowing to measure timely shifted action effects, such as the impact of an imprecise stack of the first cube on the stacking success of the third cube. For these complex situations, our model was able to prevent around 75% of the stacking errors, even for the challenging multiple-stack scenario. Thus, demonstrating that our method is able to explain, predict, and prevent execution failures, which even scales to complex scenarios that require an understanding of how the action history impacts future actions.
Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.
We tackle the problem of novel class discovery, detection, and localization (NCDL). In this setting, we assume a source dataset with labels for objects of commonly observed classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity, without human supervision. To this end, we propose a two-stage object detection network Region-based NCDL (RNCDL), that uses a region proposal network to localize object candidates and is trained to classify each candidate, either as one of the known classes, seen in the source dataset, or one of the extended set of novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those that are not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective compared to multi-stage pipelines that rely on traditional clustering algorithms or use pre-extracted crops. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without explicit supervision.
Physical law learning is the ambiguous attempt at automating the derivation of governing equations with the use of machine learning techniques. The current literature focuses however solely on the development of methods to achieve this goal, and a theoretical foundation is at present missing. This paper shall thus serve as a first step to build a comprehensive theoretical framework for learning physical laws, aiming to provide reliability to according algorithms. One key problem consists in the fact that the governing equations might not be uniquely determined by the given data. We will study this problem in the common situation of having a physical law be described by an ordinary or partial differential equation. For various different classes of differential equations, we provide both necessary and sufficient conditions for a function from a given function class to uniquely determine the differential equation which is governing the phenomenon. We then use our results to devise numerical algorithms to determine whether a function solves a differential equation uniquely. Finally, we provide extensive numerical experiments showing that our algorithms in combination with common approaches for learning physical laws indeed allow to guarantee that a unique governing differential equation is learnt, without assuming any knowledge about the function, thereby ensuring reliability.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.