亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stein importance sampling is a widely applicable technique based on kernelized Stein discrepancy, which corrects the output of approximate sampling algorithms by reweighting the empirical distribution of the samples. A general analysis of this technique is conducted for the previously unconsidered setting where samples are obtained via the simulation of a Markov chain, and applies to an arbitrary underlying Polish space. We prove that Stein importance sampling yields consistent estimators for quantities related to a target distribution of interest by using samples obtained from a geometrically ergodic Markov chain with a possibly unknown invariant measure that differs from the desired target. The approach is shown to be valid under conditions that are satisfied for a large number of unadjusted samplers, and is capable of retaining consistency when data subsampling is used. Along the way, a universal theory of reproducing Stein kernels is established, which enables the construction of kernelized Stein discrepancy on general Polish spaces, and provides sufficient conditions for kernels to be convergence-determining on such spaces. These results are of independent interest for the development of future methodology based on kernelized Stein discrepancies.

相關內容

The function-on-function linear regression model in which the response and predictors consist of random curves has become a general framework to investigate the relationship between the functional response and functional predictors. Existing methods to estimate the model parameters may be sensitive to outlying observations, common in empirical applications. In addition, these methods may be severely affected by such observations, leading to undesirable estimation and prediction results. A robust estimation method, based on iteratively reweighted simple partial least squares, is introduced to improve the prediction accuracy of the function-on-function linear regression model in the presence of outliers. The performance of the proposed method is based on the number of partial least squares components used to estimate the function-on-function linear regression model. Thus, the optimum number of components is determined via a data-driven error criterion. The finite-sample performance of the proposed method is investigated via several Monte Carlo experiments and an empirical data analysis. In addition, a nonparametric bootstrap method is applied to construct pointwise prediction intervals for the response function. The results are compared with some of the existing methods to illustrate the improvement potentially gained by the proposed method.

Determining process-structure-property linkages is one of the key objectives in material science, and uncertainty quantification plays a critical role in understanding both process-structure and structure-property linkages. In this work, we seek to learn a distribution of microstructure parameters that are consistent in the sense that the forward propagation of this distribution through a crystal plasticity finite element model (CPFEM) matches a target distribution on materials properties. This stochastic inversion formulation infers a distribution of acceptable/consistent microstructures, as opposed to a deterministic solution, which expands the range of feasible designs in a probabilistic manner. To solve this stochastic inverse problem, we employ a recently developed uncertainty quantification (UQ) framework based on push-forward probability measures, which combines techniques from measure theory and Bayes rule to define a unique and numerically stable solution. This approach requires making an initial prediction using an initial guess for the distribution on model inputs and solving a stochastic forward problem. To reduce the computational burden in solving both stochastic forward and stochastic inverse problems, we combine this approach with a machine learning (ML) Bayesian regression model based on Gaussian processes and demonstrate the proposed methodology on two representative case studies in structure-property linkages.

Safely deploying machine learning models to the real world is often a challenging process. Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere, agents trained in a simulation can struggle to adapt when deployed in the real world or novel environments, and neural networks that are fit to a subset of the population might carry some selection bias into their decision process. In this work, we describe the problem of data shift from a novel information-theoretic perspective by (i) identifying and describing the different sources of error, (ii) comparing some of the most promising objectives explored in the recent domain generalization, and fair classification literature. From our theoretical analysis and empirical evaluation, we conclude that the model selection procedure needs to be guided by careful considerations regarding the observed data, the factors used for correction, and the structure of the data-generating process.

Graphical causal models led to the development of complete non-parametric identification theory in arbitrary structured systems, and general approaches to efficient inference. Nevertheless, graphical approaches to causal inference have not been embraced by the statistics and public health communities. In those communities causal assumptions are instead expressed in terms of potential outcomes, or responses to hypothetical interventions. Such interventions are generally conceptualized only on a limited set of variables, where the corresponding experiment could, in principle, be performed. By contrast, graphical approaches to causal inference generally assume interventions on all variables are well defined - an overly restrictive and unrealistic assumption that may have limited the adoption of these approaches in applied work in statistics and public health. In this paper, we build on a unification of graphical and potential outcomes approaches to causality exemplified by Single World Intervention Graphs (SWIGs) to define graphical models with a restricted set of allowed interventions. We give a complete identification theory for such models, and develop a complete calculus of interventions based on a generalization of the do-calculus, and axioms that govern probabilistic operations on Markov kernels. A corollary of our results is a complete identification theory for causal effects in another graphical framework with a restricted set of interventions, the decision theoretic graphical formulation of causality.

Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation.General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. Among the algorithms involving latent variables and an augmented Lagrangian, a particular attention is devoted to the Lagrange multipliers for which a local and a global estimation techniques are studied. The comparisons are based on the repeated optimization of three analytical functions and a beam design problem.

In the era of open data, Poisson and other count regression models are increasingly important. Still, conventional Poisson regression has remaining issues in terms of identifiability and computational efficiency. Especially, due to an identification problem, Poisson regression can be unstable for small samples with many zeros. Provided this, we develop a closed-form inference for an over-dispersed Poisson regression including Poisson additive mixed models. The approach is derived via mode-based log-Gaussian approximation. The resulting method is fast, practical, and free from the identification problem. Monte Carlo experiments demonstrate that the estimation error of the proposed method is a considerably smaller estimation error than the closed-form alternatives and as small as the usual Poisson regressions. For counts with many zeros, our approximation has better estimation accuracy than conventional Poisson regression. We obtained similar results in the case of Poisson additive mixed modeling considering spatial or group effects. The developed method was applied for analyzing COVID-19 data in Japan. This result suggests that influences of pedestrian density, age, and other factors on the number of cases change over periods.

In this paper, we establish minimax optimal rates of convergence for prediction in a semi-functional linear model that consists of a functional component and a less smooth nonparametric component. Our results reveal that the smoother functional component can be learned with the minimax rate as if the nonparametric component were known. More specifically, a double-penalized least squares method is adopted to estimate both the functional and nonparametric components within the framework of reproducing kernel Hilbert spaces. By virtue of the representer theorem, an efficient algorithm that requires no iterations is proposed to solve the corresponding optimization problem, where the regularization parameters are selected by the generalized cross validation criterion. Numerical studies are provided to demonstrate the effectiveness of the method and to verify the theoretical analysis.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.

北京阿比特科技有限公司