亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Passwordless authentication was first tested for seamless and secure merchant payments without the use of passwords or pins. It opened a whole new world of authentications giving up the former reliance on traditional passwords. It relied on the W3C Web Authentication (WebAuthn) and Client to Authenticator Protocol (CTAP) standards to use the public key cryptosystem to uniquely attest a user's device and then their identity. These standards comprise of the FIDO authentication standard. As the popularity of passwordless is increasing, more and more users and service providers are adopting to it. However, the concept of device attestation makes it device-specific for a user. It makes it difficult for a user to switch devices. FIDO Passkeys were aimed at solving the same, synchronizing the private cryptographic keys across multiple devices so that the user can perform passwordless authentication even from devices not explicitly enrolled with the service provider. However, passkeys have certain drawbacks including that it uses proprietary end to end encryption algorithms, all keys pass through proprietary cloud provider, and it is usually not very seamless when dealing with cross-platform key synchronization. To deal with the problems and drawbacks of FIDO Passkeys, the paper proposes a novel private key management system for passwordless authentication called Transferable User Secret on Hardware Key (TUSH-Key). TUSH-Key allows cross-platform synchronization of devices for seamless passwordless logins with FIDO2 specifications.

相關內容

Image colorization is a challenging problem due to multi-modal uncertainty and high ill-posedness. Directly training a deep neural network usually leads to incorrect semantic colors and low color richness. While transformer-based methods can deliver better results, they often rely on manually designed priors, suffer from poor generalization ability, and introduce color bleeding effects. To address these issues, we propose DDColor, an end-to-end method with dual decoders for image colorization. Our approach includes a pixel decoder and a query-based color decoder. The former restores the spatial resolution of the image, while the latter utilizes rich visual features to refine color queries, thus avoiding hand-crafted priors. Our two decoders work together to establish correlations between color and multi-scale semantic representations via cross-attention, significantly alleviating the color bleeding effect. Additionally, a simple yet effective colorfulness loss is introduced to enhance the color richness. Extensive experiments demonstrate that DDColor achieves superior performance to existing state-of-the-art works both quantitatively and qualitatively. The codes and models are publicly available at //github.com/piddnad/DDColor.

Accurately and reliably positioning pedestrians in satellite-denied conditions remains a significant challenge. Pedestrian dead reckoning (PDR) is commonly employed to estimate pedestrian location using low-cost inertial sensor. However, PDR is susceptible to drift due to sensor noise, incorrect step detection, and inaccurate stride length estimation. This work proposes ReLoc-PDR, a fusion framework combining PDR and visual relocalization using graph optimization. ReLoc-PDR leverages time-correlated visual observations and learned descriptors to achieve robust positioning in visually-degraded environments. A graph optimization-based fusion mechanism with the Tukey kernel effectively corrects cumulative errors and mitigates the impact of abnormal visual observations. Real-world experiments demonstrate that our ReLoc-PDR surpasses representative methods in accuracy and robustness, achieving accurte and robust pedestrian positioning results using only a smartphone in challenging environments such as less-textured corridors and dark nighttime scenarios.

Non-Intrusive speech quality assessment (NISQA) has gained significant attention for predicting the mean opinion score (MOS) of speech without requiring the reference speech. In practical NISQA scenarios, untrusted third-party resources are often employed during deep neural network training to reduce costs. However, it would introduce a potential security vulnerability as specially designed untrusted resources can launch backdoor attacks against NISQA systems. Existing backdoor attacks primarily focus on classification tasks and are not directly applicable to NISQA which is a regression task. In this paper, we propose a novel backdoor attack on NISQA tasks, leveraging presence events as triggers to achieving highly stealthy attacks. To evaluate the effectiveness of our proposed approach, we conducted experiments on four benchmark datasets and employed two state-of-the-art NISQA models. The results demonstrate that the proposed backdoor attack achieved an average attack success rate of up to 99% with a poisoning rate of only 3%.

Machine learning models that use deep neural networks (DNNs) are vulnerable to backdoor attacks. An adversary carrying out a backdoor attack embeds a predefined perturbation called a trigger into a small subset of input samples and trains the DNN such that the presence of the trigger in the input results in an adversary-desired output class. Such adversarial retraining however needs to ensure that outputs for inputs without the trigger remain unaffected and provide high classification accuracy on clean samples. In this paper, we propose MDTD, a Multi-Domain Trojan Detector for DNNs, which detects inputs containing a Trojan trigger at testing time. MDTD does not require knowledge of trigger-embedding strategy of the attacker and can be applied to a pre-trained DNN model with image, audio, or graph-based inputs. MDTD leverages an insight that input samples containing a Trojan trigger are located relatively farther away from a decision boundary than clean samples. MDTD estimates the distance to a decision boundary using adversarial learning methods and uses this distance to infer whether a test-time input sample is Trojaned or not. We evaluate MDTD against state-of-the-art Trojan detection methods across five widely used image-based datasets: CIFAR100, CIFAR10, GTSRB, SVHN, and Flowers102; four graph-based datasets: AIDS, WinMal, Toxicant, and COLLAB; and the SpeechCommand audio dataset. MDTD effectively identifies samples that contain different types of Trojan triggers. We evaluate MDTD against adaptive attacks where an adversary trains a robust DNN to increase (decrease) distance of benign (Trojan) inputs from a decision boundary.

Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: //github.com/Guanys-dar/MGDN.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司