亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

COVID-19 pandemic has an unprecedented impact all over the world since early 2020. During this public health crisis, reliable forecasting of the disease becomes critical for resource allocation and administrative planning. The results from compartmental models such as SIR and SEIR are popularly referred by CDC and news media. With more and more COVID-19 data becoming available, we examine the following question: Can a direct data-driven approach without modeling the disease spreading dynamics outperform the well referred compartmental models and their variants? In this paper, we show the possibility. It is observed that as COVID-19 spreads at different speed and scale in different geographic regions, it is highly likely that similar progression patterns are shared among these regions within different time periods. This intuition lead us to develop a new neural forecasting model, called Attention Crossing Time Series (\textbf{ACTS}), that makes forecasts via comparing patterns across time series obtained from multiple regions. The attention mechanism originally developed for natural language processing can be leveraged and generalized to materialize this idea. Among 13 out of 18 testings including forecasting newly confirmed cases, hospitalizations and deaths, \textbf{ACTS} outperforms all the leading COVID-19 forecasters highlighted by CDC.

相關內容

Aiming to support a cross-sector and cross-border eGovernance paradigm for sharing common public services, this paper introduces an AI-enhanced solution that enables beneficiaries to participate in a decenntralized network for effective big data exchange and service delivery that promotes the once-only priority and is by design digital, efficient, cost-effective, interoperable and secure. The solution comprises (i) a reliable and efficient decentralized mechanism for data sharing, capable of addressing the complexity of the processes and their high demand of resources; (ii) an ecosystem for delivering mobile services tailored to the needs of stakeholders; (iii) a single sign-on Wallet mechanism to manage the transactions with multiple services; and (iv) an intercommunication layer, responsible for the secure exchange of information among existing eGovernment systems with newly developed ones. An indicative application scenario showcases the potential of our approach.

To manage the COVID-19 epidemic effectively, decision-makers in public health need accurate forecasts of case numbers. A potential near real-time predictor of future case numbers is human mobility; however, research on the predictive power of mobility is lacking. To fill this gap, we introduce a novel model for epidemic forecasting based on mobility data, called mobility marked Hawkes model. The proposed model consists of three components: (1) A Hawkes process captures the transmission dynamics of infectious diseases. (2) A mark modulates the rate of infections, thus accounting for how the reproduction number R varies across space and time. The mark is modeled using a regularized Poisson regression based on mobility covariates. (3) A correction procedure incorporates new cases seeded by people traveling between regions. Our model was evaluated on the COVID-19 epidemic in Switzerland. Specifically, we used mobility data from February through April 2020, amounting to approximately 1.5 billion trips. Trip counts were derived from large-scale telecommunication data, i.e., cell phone pings from the Swisscom network, the largest telecommunication provider in Switzerland. We compared our model against various state-of-the-art baselines in terms of out-of-sample root mean squared error. We found that our model outperformed the baselines by 15.52%. The improvement was consistently achieved across different forecast horizons between 5 and 21 days. In addition, we assessed the predictive power of conventional point of interest data, confirming that telecommunication data is superior. To the best of our knowledge, our work is the first to predict the spread of COVID-19 from telecommunication data. Altogether, our work contributes to previous research by developing a scalable early warning system for decision-makers in public health tasked with controlling the spread of infectious diseases.

Although Transformer has made breakthrough success in widespread domains especially in Natural Language Processing (NLP), applying it to time series forecasting is still a great challenge. In time series forecasting, the autoregressive decoding of canonical Transformer models could introduce huge accumulative errors inevitably. Besides, utilizing Transformer to deal with spatial-temporal dependencies in the problem still faces tough difficulties.~To tackle these limitations, this work is the first attempt to propose a Non-Autoregressive Transformer architecture for time series forecasting, aiming at overcoming the time delay and accumulative error issues in the canonical Transformer. Moreover, we present a novel spatial-temporal attention mechanism, building a bridge by a learned temporal influence map to fill the gaps between the spatial and temporal attention, so that spatial and temporal dependencies can be processed integrally. Empirically, we evaluate our model on diversified ego-centric future localization datasets and demonstrate state-of-the-art performance on both real-time and accuracy.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Predicting the road traffic speed is a challenging task due to different types of roads, abrupt speed changes, and spatial dependencies between roads, which requires the modeling of dynamically changing spatial dependencies among roads and temporal patterns over long input sequences. This paper proposes a novel Spatio-Temporal Graph Attention (STGRAT) that effectively captures the spatio-temporal dynamics in road networks. The features of our approach mainly include spatial attention, temporal attention, and spatial sentinel vectors. The spatial attention takes the graph structure information (e.g., distance between roads) and dynamically adjusts spatial correlation based on road states. The temporal attention is responsible for capturing traffic speed changes, while the sentinel vectors allow the model to retrieve new features from spatially correlated nodes or preserve existing features. The experimental results show that STGRAT outperforms existing models, especially in difficult conditions where traffic speeds rapidly change (e.g., rush hours). We additionally provide a qualitative study to analyze when and where STGRAT mainly attended to make accurate predictions during a rush-hour time.

Traffic forecasting is of great importance to transportation management and public safety, and very challenging due to the complicated spatial-temporal dependency and essential uncertainty brought about by the road network and traffic conditions. Latest studies mainly focus on modeling the spatial dependency by utilizing graph convolutional networks (GCNs) throughout a fixed weighted graph. However, edges, i.e., the correlations between pair-wise nodes, are much more complicated and interact with each other. In this paper, we propose the Multi-Range Attentive Bicomponent GCN (MRA-BGCN), a novel deep learning model for traffic forecasting. We first build the node-wise graph according to the road network distance and the edge-wise graph according to various edge interaction patterns. Then, we implement the interactions of both nodes and edges using bicomponent graph convolution. The multi-range attention mechanism is introduced to aggregate information in different neighborhood ranges and automatically learn the importance of different ranges. Extensive experiments on two real-world road network traffic datasets, METR-LA and PEMS-BAY, show that our MRA-BGCN achieves the state-of-the-art results.

Referring expression comprehension aims to locate the object instance described by a natural language referring expression in an image. This task is compositional and inherently requires visual reasoning on top of the relationships among the objects in the image. Meanwhile, the visual reasoning process is guided by the linguistic structure of the referring expression. However, existing approaches treat the objects in isolation or only explore the first-order relationships between objects without being aligned with the potential complexity of the expression. Thus it is hard for them to adapt to the grounding of complex referring expressions. In this paper, we explore the problem of referring expression comprehension from the perspective of language-driven visual reasoning, and propose a dynamic graph attention network to perform multi-step reasoning by modeling both the relationships among the objects in the image and the linguistic structure of the expression. In particular, we construct a graph for the image with the nodes and edges corresponding to the objects and their relationships respectively, propose a differential analyzer to predict a language-guided visual reasoning process, and perform stepwise reasoning on top of the graph to update the compound object representation at every node. Experimental results demonstrate that the proposed method can not only significantly surpass all existing state-of-the-art algorithms across three common benchmark datasets, but also generate interpretable visual evidences for stepwisely locating the objects referred to in complex language descriptions.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司