亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide a new perspective to understand why reinforcement learning (RL) struggles with robustness and generalization. We show, by examples, that local optimal policies may contain unstable control for some dynamic parameters and overfitting to such instabilities can deteriorate robustness and generalization. Contraction analysis of neural control reveals that there exists boundaries between stable and unstable control with respect to the input gradients of control networks. Ignoring those stability boundaries, learning agents may label the actions that cause instabilities for some dynamic parameters as high value actions if those actions can improve the expected return. The small fraction of such instabilities may not cause attention in the empirical studies, a hidden risk for real-world applications. Those instabilities can manifest themselves via overfitting, leading to failures in robustness and generalization. We propose stability constraints and terminal constraints to solve this issue, demonstrated with a proximal policy optimization example.

相關內容

The quality of Optical Music Recognition (OMR) systems is a rather difficult magnitude to measure. There is no lingua franca shared among OMR datasets that allows to compare systems' performance on equal grounds, since most of them are specialised on certain approaches. As a result, most state-of-the-art works currently report metrics that cannot be compared directly. In this paper we identify the need of a common music representation language and propose the Music Tree Notation (MTN) format, thanks to which the definition of standard metrics is possible. This format represents music as a set of primitives that group together into higher-abstraction nodes, a compromise between the expression of fully graph-based and sequential notation formats. We have also developed a specific set of OMR metrics and a typeset score dataset as a proof of concept of this idea.

Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of both accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the issue of heteroscedastic noise, we introduce relaxed and implementable sufficient conditions, proving the identifiability of a general class of SEM subject to these conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and to learn a causal DAG from data with heteroscedastic variable noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.

We propose Diffusion Noise Optimization (DNO), a new method that effectively leverages existing motion diffusion models as motion priors for a wide range of motion-related tasks. Instead of training a task-specific diffusion model for each new task, DNO operates by optimizing the diffusion latent noise of an existing pre-trained text-to-motion model. Given the corresponding latent noise of a human motion, it propagates the gradient from the target criteria defined on the motion space through the whole denoising process to update the diffusion latent noise. As a result, DNO supports any use cases where criteria can be defined as a function of motion. In particular, we show that, for motion editing and control, DNO outperforms existing methods in both achieving the objective and preserving the motion content. DNO accommodates a diverse range of editing modes, including changing trajectory, pose, joint locations, or avoiding newly added obstacles. In addition, DNO is effective in motion denoising and completion, producing smooth and realistic motion from noisy and partial inputs. DNO achieves these results at inference time without the need for model retraining, offering great versatility for any defined reward or loss function on the motion representation.

Deep reinforcement learning (RL) has shown remarkable success in specific offline decision-making scenarios, yet its theoretical guarantees are still under development. Existing works on offline RL theory primarily emphasize a few trivial settings, such as linear MDP or general function approximation with strong assumptions and independent data, which lack guidance for practical use. The coupling of deep learning and Bellman residuals makes this problem challenging, in addition to the difficulty of data dependence. In this paper, we establish a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation with $\mathcal{C}$-mixing data regarding the structure of networks, the dimension of datasets, and the concentrability of data coverage, under mild assumptions. Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight. This result demonstrates the explicit efficiency of deep adversarial offline RL frameworks. We utilize the empirical process tool for $\mathcal{C}$-mixing sequences and the neural network approximation theory for the H\"{o}lder class to achieve this. We also develop methods to bound the Bellman estimation error caused by function approximation with empirical Bellman constraint perturbations. Additionally, we present a result that lessens the curse of dimensionality using data with low intrinsic dimensionality and function classes with low complexity. Our estimation provides valuable insights into the development of deep offline RL and guidance for algorithm model design.

The matrix completion problem aims to reconstruct a low-rank matrix based on a revealed set of possibly noisy entries. Prior works consider completing the entire matrix with generalization error guarantees. However, the completion accuracy can be drastically different over different entries. This work establishes a new framework of partial matrix completion, where the goal is to identify a large subset of the entries that can be completed with high confidence. We propose an efficient algorithm with the following provable guarantees. Given access to samples from an unknown and arbitrary distribution, it guarantees: (a) high accuracy over completed entries, and (b) high coverage of the underlying distribution. We also consider an online learning variant of this problem, where we propose a low-regret algorithm based on iterative gradient updates. Preliminary empirical evaluations are included.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司