In order to estimate the proportion of `immune' or `cured' subjects who will never experience failure, a sufficiently long follow-up period is required. Several statistical tests have been proposed in the literature for assessing the assumption of sufficient follow-up, meaning that the study duration is longer than the support of the survival times for the uncured subjects. However, for practical purposes, the follow-up would be considered sufficiently long if the probability for the event to happen after the end of the study is very small. Based on this observation, we formulate a more relaxed notion of `practically' sufficient follow-up characterized by the quantiles of the distribution and develop a novel nonparametric statistical test. The proposed method relies mainly on the assumption of a non-increasing density function in the tail of the distribution. The test is then based on a shape constrained density estimator such as the Grenander or the kernel smoothed Grenander estimator and a bootstrap procedure is used for computation of the critical values. The performance of the test is investigated through an extensive simulation study, and the method is illustrated on breast cancer data.
We revisit the problem of the existence of the maximum likelihood estimate for multi-class logistic regression. We show that one method of ensuring its existence is by assigning positive probability to every class in the sample dataset. The notion of data separability is not needed, which is in contrast to the classical set up of multi-class logistic regression in which each data sample belongs to one class. We also provide a general and constructive estimate of the convergence rate to the maximum likelihood estimate when gradient descent is used as the optimizer. Our estimate involves bounding the condition number of the Hessian of the maximum likelihood function. The approaches used in this article rely on a simple operator-theoretic framework.
Bayesian regression determines model parameters by minimizing the expected loss, an upper bound to the true generalization error. However, the loss ignores misspecification, where models are imperfect. Parameter uncertainties from Bayesian regression are thus significantly underestimated and vanish in the large data limit. This is particularly problematic when building models of low- noise, or near-deterministic, calculations, as the main source of uncertainty is neglected. We analyze the generalization error of misspecified, near-deterministic surrogate models, a regime of broad relevance in science and engineering. We show posterior distributions must cover every training point to avoid a divergent generalization error and design an ansatz that respects this constraint, which for linear models incurs minimal overhead. This is demonstrated on model problems before application to thousand dimensional datasets in atomistic machine learning. Our efficient misspecification-aware scheme gives accurate prediction and bounding of test errors where existing schemes fail, allowing this important source of uncertainty to be incorporated in computational workflows.
We consider the problem of learning and using predictions for warm start algorithms with predictions. In this setting, an algorithm is given an instance of a problem, and a prediction of the solution. The runtime of the algorithm is bounded by the distance from the predicted solution to the true solution of the instance. Previous work has shown that when instances are drawn iid from some distribution, it is possible to learn an approximately optimal fixed prediction (Dinitz et al, NeurIPS 2021), and in the adversarial online case, it is possible to compete with the best fixed prediction in hindsight (Khodak et al, NeurIPS 2022). In this work we give competitive guarantees against stronger benchmarks that consider a set of $k$ predictions $\mathbf{P}$. That is, the "optimal offline cost" to solve an instance with respect to $\mathbf{P}$ is the distance from the true solution to the closest member of $\mathbf{P}$. This is analogous to the $k$-medians objective function. In the distributional setting, we show a simple strategy that incurs cost that is at most an $O(k)$ factor worse than the optimal offline cost. We then show a way to leverage learnable coarse information, in the form of partitions of the instance space into groups of "similar" instances, that allows us to potentially avoid this $O(k)$ factor. Finally, we consider an online version of the problem, where we compete against offline strategies that are allowed to maintain a moving set of $k$ predictions or "trajectories," and are charged for how much the predictions move. We give an algorithm that does at most $O(k^4 \ln^2 k)$ times as much work as any offline strategy of $k$ trajectories. This algorithm is deterministic (robust to an adaptive adversary), and oblivious to the setting of $k$. Thus the guarantee holds for all $k$ simultaneously.
In this paper, we consider an experimental setting where units enter the experiment sequentially. Our goal is to form stopping rules which lead to estimators of treatment effects with a given precision. We propose a fixed-width confidence interval design (FWCID) where the experiment terminates once a pre-specified confidence interval width is achieved. We show that under this design, the difference-in-means estimator is a consistent estimator of the average treatment effect and standard confidence intervals have asymptotic guarantees of coverage and efficiency for several versions of the design. In addition, we propose a version of the design that we call fixed power design (FPD) where a given power is asymptotically guaranteed for a given treatment effect, without the need to specify the variances of the outcomes under treatment or control. In addition, this design also gives a consistent difference-in-means estimator with correct coverage of the corresponding standard confidence interval. We complement our theoretical findings with Monte Carlo simulations where we compare our proposed designs with standard designs in the sequential experiments literature, showing that our designs outperform these designs in several important aspects. We believe our results to be relevant for many experimental settings where units enter sequentially, such as in clinical trials, as well as in online A/B tests used by the tech and e-commerce industry.
The problem of matroid-reachability-based packing of arborescences was solved by Kir\'aly. Here we solve the corresponding decomposition problem that turns out to be more complicated. The result is obtained from the solution of the more general problem of matroid-reachability-based $(\ell,\ell')$-limited packing of arborescences where we are given a lower bound $\ell$ and an upper bound $\ell'$ on the total number of arborescences in the packing. The problem is considered for branchings and in directed hypergraphs as well.
We study the properties of a family of distances between functions of a single variable. These distances are examples of integral probability metrics, and have been used previously for comparing probability measures on the line; special cases include the Earth Mover's Distance and the Kolmogorov Metric. We examine their properties for general signals, proving that they are robust to a broad class of deformations. We also establish corresponding robustness results for the induced sliced distances between multivariate functions. Finally, we establish error bounds for approximating the univariate metrics from finite samples, and prove that these approximations are robust to additive Gaussian noise. The results are illustrated in numerical experiments, which include comparisons with Wasserstein distances.
We present a new algorithm for imitation learning in infinite horizon linear MDPs dubbed ILARL which greatly improves the bound on the number of trajectories that the learner needs to sample from the environment. In particular, we remove exploration assumptions required in previous works and we improve the dependence on the desired accuracy $\epsilon$ from $\mathcal{O}\br{\epsilon^{-5}}$ to $\mathcal{O}\br{\epsilon^{-4}}$. Our result relies on a connection between imitation learning and online learning in MDPs with adversarial losses. For the latter setting, we present the first result for infinite horizon linear MDP which may be of independent interest. Moreover, we are able to provide a strengthen result for the finite horizon case where we achieve $\mathcal{O}\br{\epsilon^{-2}}$. Numerical experiments with linear function approximation shows that ILARL outperforms other commonly used algorithms.
Optimization over the set of matrices that satisfy $X^\top B X = I_p$, referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods, such as Riemannian approaches, which require a computationally expensive eigenvalue decomposition involving fully formed $B$. We propose a cheap stochastic iterative method that solves the optimization problem while having access only to a random estimate of the feasible set. Our method does not enforce the constraint in every iteration exactly, but instead it produces iterations that converge to a critical point on the generalized Stiefel manifold defined in expectation. The method has lower per-iteration cost, requires only matrix multiplications, and has the same convergence rates as its Riemannian counterparts involving the full matrix $B$. Experiments demonstrate its effectiveness in various machine learning applications involving generalized orthogonality constraints, including CCA, ICA, and GEVP.
We introduce a new nonparametric framework for classification problems in the presence of missing data. The key aspect of our framework is that the regression function decomposes into an anova-type sum of orthogonal functions, of which some (or even many) may be zero. Working under a general missingness setting, which allows features to be missing not at random, our main goal is to derive the minimax rate for the excess risk in this problem. In addition to the decomposition property, the rate depends on parameters that control the tail behaviour of the marginal feature distributions, the smoothness of the regression function and a margin condition. The ambient data dimension does not appear in the minimax rate, which can therefore be faster than in the classical nonparametric setting. We further propose a new method, called the Hard-thresholding Anova Missing data (HAM) classifier, based on a careful combination of a k-nearest neighbour algorithm and a thresholding step. The HAM classifier attains the minimax rate up to polylogarithmic factors and numerical experiments further illustrate its utility.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.