亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large integer factorization is a prominent research challenge, particularly in the context of quantum computing. The classical computation of prime factors for an integer entails exponential time complexity. Quantum computing offers the potential for significantly faster computational processes compared to classical processors. We proposed a new quantum algorithm, Shallow Depth Factoring (SDF), to factor an integer. SDF consists of three steps. First, it converts a factoring problem to an optimization problem without an objective function. Then, we use a Quantum Feasibility Labeling (QFL) to label every possible solution according to whether it is feasible or infeasible for the optimization problem. Finally, the Variational Quantum Search (VQS) is used to find all feasible solutions. The SDF algorithm utilizes shallow-depth quantum circuits for efficient factorization, with the circuit depth scaling linearly as the integer to be factorized increases. Through minimizing the number of gates in the circuit, the algorithm enhances feasibility and reduces vulnerability to errors.

相關內容

Outlier detection (OD) finds many applications with a rich literature of numerous techniques. Deep neural network based OD (DOD) has seen a recent surge of attention thanks to the many advances in deep learning. In this paper, we consider a critical-yet-understudied challenge with unsupervised DOD, that is, effective hyperparameter (HP) tuning/model selection. While several prior work report the sensitivity of OD models to HPs, it becomes ever so critical for the modern DOD models that exhibit a long list of HPs. We introduce HYPER for tuning DOD models, tackling two fundamental challenges: (1) validation without supervision (due to lack of labeled anomalies), and (2) efficient search of the HP/model space (due to exponential growth in the number of HPs). A key idea is to design and train a novel hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model. In turn, HYPER capitalizes on a single HN that can dynamically generate weights for many DOD models (corresponding to varying HPs), which offers significant speed-up. In addition, it employs meta-learning on historical OD tasks with labels to train a proxy validation function, likewise trained with our proposed HN efficiently. Extensive experiments on 35 OD tasks show that HYPER achieves high performance against 8 baselines with significant efficiency gains.

We extend three related results from the analysis of influences of Boolean functions to the quantum setting, namely the KKL Theorem, Friedgut's Junta Theorem and Talagrand's variance inequality for geometric influences. Our results are derived by a joint use of recently studied hypercontractivity and gradient estimates. These generic tools also allow us to derive generalizations of these results in a general von Neumann algebraic setting beyond the case of the quantum hypercube, including examples in infinite dimensions relevant to quantum information theory such as continuous variables quantum systems. Finally, we comment on the implications of our results as regards to noncommutative extensions of isoperimetric type inequalities, quantum circuit complexity lower bounds and the learnability of quantum observables.

Quantum computing presents a promising approach for machine learning with its capability for extremely parallel computation in high-dimension through superposition and entanglement. Despite its potential, existing quantum learning algorithms, such as Variational Quantum Circuits(VQCs), face challenges in handling more complex datasets, particularly those that are not linearly separable. What's more, it encounters the deployability issue, making the learning models suffer a drastic accuracy drop after deploying them to the actual quantum devices. To overcome these limitations, this paper proposes a novel spatial-temporal design, namely ST-VQC, to integrate non-linearity in quantum learning and improve the robustness of the learning model to noise. Specifically, ST-VQC can extract spatial features via a novel block-based encoding quantum sub-circuit coupled with a layer-wise computation quantum sub-circuit to enable temporal-wise deep learning. Additionally, a SWAP-Free physical circuit design is devised to improve robustness. These designs bring a number of hyperparameters. After a systematic analysis of the design space for each design component, an automated optimization framework is proposed to generate the ST-VQC quantum circuit. The proposed ST-VQC has been evaluated on two IBM quantum processors, ibm_cairo with 27 qubits and ibmq_lima with 7 qubits to assess its effectiveness. The results of the evaluation on the standard dataset for binary classification show that ST-VQC can achieve over 30% accuracy improvement compared with existing VQCs on actual quantum computers. Moreover, on a non-linear synthetic dataset, the ST-VQC outperforms a linear classifier by 27.9%, while the linear classifier using classical computing outperforms the existing VQC by 15.58%.

Let $G$ be a graph, which represents a social network, and suppose each node $v$ has a threshold value $\tau(v)$. Consider an initial configuration, where each node is either positive or negative. In each discrete time step, a node $v$ becomes/remains positive if at least $\tau(v)$ of its neighbors are positive and negative otherwise. A node set $\mathcal{S}$ is a Target Set (TS) whenever the following holds: if $\mathcal{S}$ is fully positive initially, all nodes in the graph become positive eventually. We focus on a generalization of TS, called Timed TS (TTS), where it is permitted to assign a positive state to a node at any step of the process, rather than just at the beginning. We provide graph structures for which the minimum TTS is significantly smaller than the minimum TS, indicating that timing is an essential aspect of successful target selection strategies. Furthermore, we prove tight bounds on the minimum size of a TTS in terms of the number of nodes and maximum degree when the thresholds are assigned based on the majority rule. We show that the problem of determining the minimum size of a TTS is NP-hard and provide an Integer Linear Programming formulation and a greedy algorithm. We evaluate the performance of our algorithm by conducting experiments on various synthetic and real-world networks. We also present a linear-time exact algorithm for trees.

Quantum computing is a rapidly evolving field that enables exponential speed-up over classical algorithms. At the heart of this revolutionary technology are quantum circuits, which serve as vital tools for implementing, analyzing, and optimizing quantum algorithms. Recent advancements in quantum computing and the increasing capability of quantum devices have led to the development of more complex quantum circuits. However, traditional quantum circuit diagrams suffer from scalability and readability issues, which limit the efficiency of analysis and optimization processes. In this research, we propose a novel visualization approach for large-scale quantum circuits by adopting semantic analysis to facilitate the comprehension of quantum circuits. We first exploit meta-data and semantic information extracted from the underlying code of quantum circuits to create component segmentations and pattern abstractions, allowing for easier wrangling of massive circuit diagrams. We then develop Quantivine, an interactive system for exploring and understanding quantum circuits. A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement. The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits and a formal user evaluation with quantum experts. A free copy of this paper and all supplemental materials are available at //osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9.

Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. Much research has been devoted to describing the predictive distribution (PD) $F(y|\mathbf{x})$ of a target variable $y \in \mathbb{R}$ given complex input features $\mathbf{x} \in \mathcal{X}$. However, off-the-shelf PDs (from, e.g., normalizing flows and Bayesian neural networks) often lack conditional calibration with the probability of occurrence of an event given input $\mathbf{x}$ being significantly different from the predicted probability. Current calibration methods do not fully assess and enforce conditionally calibrated PDs. Here we propose \texttt{Cal-PIT}, a method that addresses both PD diagnostics and recalibration by learning a single probability-probability map from calibration data. The key idea is to regress probability integral transform scores against $\mathbf{x}$. The estimated regression provides interpretable diagnostics of conditional coverage across the feature space. The same regression function morphs the misspecified PD to a re-calibrated PD for all $\mathbf{x}$. We benchmark our corrected prediction bands (a by-product of corrected PDs) against oracle bands and state-of-the-art predictive inference algorithms for synthetic data. We also provide results for two applications: (i) probabilistic nowcasting given sequences of satellite images, and (ii) conditional density estimation of galaxy distances given imaging data (so-called photometric redshift estimation). Our code is available as a Python package //github.com/lee-group-cmu/Cal-PIT .

Discrimination between objects, in particular quantum states, is one of the most fundamental tasks in (quantum) information theory. Recent years have seen significant progress towards extending the framework to point-to-point quantum channels. However, with technological progress the focus of the field is shifting to more complex structures: Quantum networks. In contrast to channels, networks allow for intermediate access points where information can be received, processed and reintroduced into the network. In this work we study the discrimination of quantum networks and its fundamental limitations. In particular when multiple uses of the network are at hand, the rooster of available strategies becomes increasingly complex. The simplest quantum network that capturers the structure of the problem is given by a quantum superchannel. We discuss the available classes of strategies when considering $n$ copies of a superchannel and give fundamental bounds on the asymptotically achievable rates in an asymmetric discrimination setting. Furthermore, we discuss achievability, symmetric network discrimination, the strong converse exponent, generalization to arbitrary quantum networks and finally an application to an active version of the quantum illumination problem.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司