亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Structural balance theory studies stability in networks. Given a $n$-vertex complete graph $G=(V,E)$ whose edges are labeled positive or negative, the graph is considered \emph{balanced} if every triangle either consists of three positive edges (three mutual ``friends''), or one positive edge and two negative edges (two ``friends'' with a common ``enemy''). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: $(i)$ detecting whether a given graph is balanced, or $(ii)$ finding a partition that approximates the \emph{frustration index}, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on \emph{memory efficiency}. We provide randomized single-pass algorithms for: $(i)$ determining whether an input graph is balanced with $O(\log{n})$ memory, and $(ii)$ finding a partition that induces a $(1 + \varepsilon)$-approximation to the frustration index with $O(n \cdot \text{polylog}(n))$ memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen \emph{vertices} in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from $n^{O(1/\varepsilon^2)}$ to $O(n^2\log^3{n}/\varepsilon^2 + n\log n \cdot (1/\varepsilon)^{O(1/\varepsilon^4)})$ time for $(1+\varepsilon)$-approximation. These results may be of independent interest.

相關內容

The homology groups of a simplicial complex reveal fundamental properties of the topology of the data or the system and the notion of topological stability naturally poses an important yet not fully investigated question. In the current work, we study the stability in terms of the smallest perturbation sufficient to change the dimensionality of the corresponding homology group. Such definition requires an appropriate weighting and normalizing procedure for the boundary operators acting on the Hodge algebra's homology groups. Using the resulting boundary operators, we then formulate the question of structural stability as a spectral matrix nearness problem for the corresponding higher-order graph Laplacian. We develop a bilevel optimization procedure suitable for the formulated matrix nearness problem and illustrate the method's performance on a variety of synthetic quasi-triangulation datasets and transportation networks.

Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a well-tested pseudo-random number generator, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.

It has been observed by several authors that well-known periodization strategies like tent or Chebychev transforms lead to remarkable results for the recovery of multivariate functions from few samples. So far, theoretical guarantees are missing. The goal of this paper is twofold. On the one hand, we give such guarantees and briefly describe the difficulties of the involved proof. On the other hand, we combine these periodization strategies with recent novel constructive methods for the efficient subsampling of finite frames in $\mathbb{C}$. As a result we are able to reconstruct non-periodic multivariate functions from very few samples. The used sampling nodes are the result of a two-step procedure. Firstly, a random draw with respect to the Chebychev measure provides an initial node set. A further sparsification technique selects a significantly smaller subset of these nodes with equal approximation properties. This set of sampling nodes scales linearly in the dimension of the subspace on which we project and works universally for the whole class of functions. The method is based on principles developed by Batson, Spielman, and Srivastava and can be numerically implemented. Samples on these nodes are then used in a (plain) least-squares sampling recovery step on a suitable hyperbolic cross subspace of functions resulting in a near-optimal behavior of the sampling error. Numerical experiments indicate the applicability of our results.

In this work, we initiate the complexity study of Biclique Contraction and Balanced Biclique Contraction. In these problems, given as input a graph G and an integer k, the objective is to determine whether one can contract at most k edges in G to obtain a biclique and a balanced biclique, respectively. We first prove that these problems are NP-complete even when the input graph is bipartite. Next, we study the parameterized complexity of these problems and show that they admit single exponential-time FPT algorithms when parameterized by the number k of edge contractions. Then, we show that Balanced Biclique Contraction admits a quadratic vertex kernel while Biclique Contraction does not admit any polynomial compression (or kernel) under standard complexity-theoretic assumptions.

Regularization promotes well-posedness in solving an inverse problem with incomplete measurement data. The regularization term is typically designed based on a priori characterization of the unknown signal, such as sparsity or smoothness. The standard inhomogeneous regularization incorporates a spatially changing exponent $p$ of the standard $\ell_p$ norm-based regularization to recover a signal whose characteristic varies spatially. This study proposes a weighted inhomogeneous regularization that extends the standard inhomogeneous regularization through new exponent design and weighting using spatially varying weights. The new exponent design avoids misclassification when different characteristics stay close to each other. The weights handle another issue when the region of one characteristic is too small to be recovered effectively by the $\ell_p$ norm-based regularization even after identified correctly. A suite of numerical tests shows the efficacy of the proposed weighted inhomogeneous regularization, including synthetic image experiments and real sea ice recovery from its incomplete wave measurements.

Automated Machine Learning (AutoML) techniques have recently been introduced to design Collaborative Filtering (CF) models in a data-specific manner. However, existing works either search architectures or hyperparameters while ignoring the fact they are intrinsically related and should be considered together. This motivates us to consider a joint hyperparameter and architecture search method to design CF models. However, this is not easy because of the large search space and high evaluation cost. To solve these challenges, we reduce the space by screening out usefulness yperparameter choices through a comprehensive understanding of individual hyperparameters. Next, we propose a two-stage search algorithm to find proper configurations from the reduced space. In the first stage, we leverage knowledge from subsampled datasets to reduce evaluation costs; in the second stage, we efficiently fine-tune top candidate models on the whole dataset. Extensive experiments on real-world datasets show better performance can be achieved compared with both hand-designed and previous searched models. Besides, ablation and case studies demonstrate the effectiveness of our search framework.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

北京阿比特科技有限公司