亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The family of log-concave density functions contains various kinds of common probability distributions. Due to the shape restriction, it is possible to find the nonparametric estimate of the density, for example, the nonparametric maximum likelihood estimate (NPMLE). However, the associated uncertainty quantification of the NPMLE is less well developed. The current techniques for uncertainty quantification are Bayesian, using a Dirichlet process prior combined with the use of Markov chain Monte Carlo (MCMC) to sample from the posterior. In this paper, we start with the NPMLE and use a version of the martingale posterior distribution to establish uncertainty about the NPMLE. The algorithm can be implemented in parallel and hence is fast. We prove the convergence of the algorithm by constructing suitable submartingales. We also illustrate results with different models and settings and some real data, and compare our method with that within the literature.

相關內容

We propose a nonlinear difference-in-differences method to estimate multivariate counterfactual distributions in classical treatment and control study designs with observational data. Our approach sheds a new light on existing approaches like the changes-in-changes and the classical semiparametric difference-in-differences estimator and generalizes them to settings with multivariate heterogeneity in the outcomes. The main benefit of this extension is that it allows for arbitrary dependence and heterogeneity in the joint outcomes. We demonstrate its utility both on synthetic and real data. In particular, we revisit the classical Card \& Krueger dataset, examining the effect of a minimum wage increase on employment in fast food restaurants; a reanalysis with our method reveals that restaurants tend to substitute full-time with part-time labor after a minimum wage increase at a faster pace. A previous version of this work was entitled "An optimal transport approach to causal inference.

We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization

We consider the differentially private (DP) facility location problem in the so called super-set output setting proposed by Gupta et al. [SODA 2010]. The current best known expected approximation ratio for an $\epsilon$-DP algorithm is $O\left(\frac{\log n}{\sqrt{\epsilon}}\right)$ due to Cohen-Addad et al. [AISTATS 2022] where $n$ denote the size of the metric space, meanwhile the best known lower bound is $\Omega(1/\sqrt{\epsilon})$ [NeurIPS 2019]. In this short note, we give a lower bound of $\tilde{\Omega}\left(\min\left\{\log n, \sqrt{\frac{\log n}{\epsilon}}\right\}\right)$ on the expected approximation ratio of any $\epsilon$-DP algorithm, which is the first evidence that the approximation ratio has to grow with the size of the metric space.

Flexible modeling of the entire distribution as a function of covariates is an important generalization of mean-based regression that has seen growing interest over the past decades in both the statistics and machine learning literature. This review outlines selected state-of-the-art statistical approaches to distributional regression, complemented with alternatives from machine learning. Topics covered include the similarities and differences between these approaches, extensions, properties and limitations, estimation procedures, and the availability of software. In view of the increasing complexity and availability of large-scale data, this review also discusses the scalability of traditional estimation methods, current trends, and open challenges. Illustrations are provided using data on childhood malnutrition in Nigeria and Australian electricity prices.

Equivalence testing, a fundamental problem in the field of distribution testing, seeks to infer if two unknown distributions on $[n]$ are the same or far apart in the total variation distance. Conditional sampling has emerged as a powerful query model and has been investigated by theoreticians and practitioners alike, leading to the design of optimal algorithms albeit in a sequential setting (also referred to as adaptive tester). Given the profound impact of parallel computing over the past decades, there has been a strong desire to design algorithms that enable high parallelization. Despite significant algorithmic advancements over the last decade, parallelizable techniques (also termed non-adaptive testers) have $\tilde{O}(\log^{12}n)$ query complexity, a prohibitively large complexity to be of practical usage. Therefore, the primary challenge is whether it is possible to design algorithms that enable high parallelization while achieving efficient query complexity. Our work provides an affirmative answer to the aforementioned challenge: we present a highly parallelizable tester with a query complexity of $\tilde{O}(\log n)$, achieved through a single round of adaptivity, marking a significant stride towards harmonizing parallelizability and efficiency in equivalence testing.

Deep reinforcement learning algorithms are usually impeded by sampling inefficiency, heavily depending on multiple interactions with the environment to acquire accurate decision-making capabilities. In contrast, humans rely on their hippocampus to retrieve relevant information from past experiences of relevant tasks, which guides their decision-making when learning a new task, rather than exclusively depending on environmental interactions. Nevertheless, designing a hippocampus-like module for an agent to incorporate past experiences into established reinforcement learning algorithms presents two challenges. The first challenge involves selecting the most relevant past experiences for the current task, and the second challenge is integrating such experiences into the decision network. To address these challenges, we propose a novel method that utilizes a retrieval network based on task-conditioned hypernetwork, which adapts the retrieval network's parameters depending on the task. At the same time, a dynamic modification mechanism enhances the collaborative efforts between the retrieval and decision networks. We evaluate the proposed method across various tasks within a multitask scenario in the Minigrid environment. The experimental results demonstrate that our proposed method significantly outperforms strong baselines.

The capabilities of large language models (LLMs) have been progressing at a breathtaking speed, leaving even their own developers grappling with the depth of their potential and risks. While initial steps have been taken to evaluate the safety and alignment of general-knowledge LLMs, exposing some weaknesses, to our knowledge, the safety and alignment of medical LLMs has not been evaluated despite their risks for personal health and safety, public health and safety, and human rights. To this end, we carry out the first safety evaluation for medical LLMs. Specifically, we set forth a definition of medical safety and alignment for medical artificial intelligence systems, develop a dataset of harmful medical questions to evaluate the medical safety and alignment of an LLM, evaluate both general and medical safety and alignment of medical LLMs, demonstrate fine-tuning as an effective mitigation strategy, and discuss broader, large-scale approaches used by the machine learning community to develop safe and aligned LLMs. We hope that this work casts light on the safety and alignment of medical LLMs and motivates future work to study it and develop additional mitigation strategies, minimizing the risks of harm of LLMs in medicine.

State-of-the-art decentralized learning algorithms typically require the data distribution to be Independent and Identically Distributed (IID). However, in practical scenarios, the data distribution across the agents can have significant heterogeneity. In this work, we propose averaging rate scheduling as a simple yet effective way to reduce the impact of heterogeneity in decentralized learning. Our experiments illustrate the superiority of the proposed method (~3% improvement in test accuracy) compared to the conventional approach of employing a constant averaging rate.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司