亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An accepted practice to decrease applications' memory usage is to reduce the amount and frequency of memory allocations. Factors such as (a) the prevalence of out-of-memory (OOM) killers, (b) memory allocations in modern programming languages done implicitly, (c) overcommitting being a default strategy in the Linux kernel, and (d) the rise in complexity and terminology related to memory management makes the existing guidance inefficient. The industry needs detailed guidelines for optimizing memory usage targeting specific operating systems (OS) and programming language types.

相關內容

The development of Large Language Models (LLMs) has notably transformed numerous sectors, offering impressive text generation capabilities. Yet, the reliability and truthfulness of these models remain pressing concerns. To this end, we investigate iterative prompting, a strategy hypothesized to refine LLM responses, assessing its impact on LLM truthfulness, an area which has not been thoroughly explored. Our extensive experiments delve into the intricacies of iterative prompting variants, examining their influence on the accuracy and calibration of model responses. Our findings reveal that naive prompting methods significantly undermine truthfulness, leading to exacerbated calibration errors. In response to these challenges, we introduce several prompting variants designed to address the identified issues. These variants demonstrate marked improvements over existing baselines, signaling a promising direction for future research. Our work provides a nuanced understanding of iterative prompting and introduces novel approaches to enhance the truthfulness of LLMs, thereby contributing to the development of more accurate and trustworthy AI systems.

Anomaly detection requires detecting abnormal samples in large unlabeled datasets. While progress in deep learning and the advent of foundation models has produced powerful zero-shot anomaly detection methods, their deployment in practice is often hindered by the lack of labeled data -- without it, their detection performance cannot be evaluated reliably. In this work, we propose SWSA (Selection With Synthetic Anomalies): a general-purpose framework to select image-based anomaly detectors with a generated synthetic validation set. Our proposed anomaly generation method assumes access to only a small support set of normal images and requires no training or fine-tuning. Once generated, our synthetic validation set is used to create detection tasks that compose a validation framework for model selection. In an empirical study, we find that SWSA often selects models that match selections made with a ground-truth validation set, resulting in higher AUROCs than baseline methods. We also find that SWSA selects prompts for CLIP-based anomaly detection that outperform baseline prompt selection strategies on all datasets, including the challenging MVTec-AD and VisA datasets.

We propose a novel nonparametric sequential test for composite hypotheses for means of multiple data streams. Our proposed method, \emph{peeking with expectation-based averaged capital} (PEAK), builds upon the testing-as-betting framework and provides a non-asymptotic $\alpha$-level test across any stopping time. PEAK is computationally tractable and efficiently rejects hypotheses that are incorrect across all potential distributions that satisfy our nonparametric assumption, enabling joint composite hypothesis testing on multiple streams of data. We numerically validate our theoretical findings under the best arm identification and threshold identification in the bandit setting, illustrating the computational efficiency of our method against state-of-the-art testing methods.

Over the past decade, significant advances have been made in the field of image search for e-commerce applications. Traditional image-to-image retrieval models, which focus solely on image details such as texture, tend to overlook useful semantic information contained within the images. As a result, the retrieved products might possess similar image details, but fail to fulfil the user's search goals. Moreover, the use of image-to-image retrieval models for products containing multiple images results in significant online product feature storage overhead and complex mapping implementations. In this paper, we report the design and deployment of the proposed Multi-modal Item Embedding Model (MIEM) to address these limitations. It is capable of utilizing both textual information and multiple images about a product to construct meaningful product features. By leveraging semantic information from images, MIEM effectively supplements the image search process, improving the overall accuracy of retrieval results. MIEM has become an integral part of the Shopee image search platform. Since its deployment in March 2023, it has achieved a remarkable 9.90% increase in terms of clicks per user and a 4.23% boost in terms of orders per user for the image search feature on the Shopee e-commerce platform.

We consider causal mediation analysis with confounders subject to nonignorable missingness in a nonparametric framework. Our approach relies on shadow variables that are associated with the missing confounders but independent of the missingness mechanism. The mediation effect of interest is shown to be a weighted average of an iterated conditional expectation, which motivates our Sieve-based Iterative Outward (SIO) estimator. We derive the rate of convergence and asymptotic normality of the SIO estimator, which do not suffer from the ill-posed inverse problem. Essentially, we show that the asymptotic normality is not affected by the slow convergence rate of nonparametric estimators of nuisance functions. Moreover, we demonstrate that our estimator is locally efficient and attains the semiparametric efficiency bound under certain conditions. We accurately depict the efficiency loss attributable to missingness and identify scenarios in which efficiency loss is absent. We also propose a stable and easy-to-implement approach to estimate asymptotic variance and construct confidence intervals for the mediation effects. Finally, we evaluate the finite-sample performance of our proposed approach through simulation studies, and apply it to the CFPS data to show its practical applicability.

User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By contrasting NCA and InfoNCA, we show that InfoNCA and DPO adjust relative likelihood across different responses to a single instruction, while NCA optimizes absolute likelihood for each response. We apply our methods to align a 7B language model with a GPT-4 annotated reward dataset. Experimental results suggest that InfoNCA surpasses the DPO baseline in GPT-4 evaluations, while NCA enjoys better training stability with competitive performance.

The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

北京阿比特科技有限公司