亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe a procedure for the generation of functional digraphs up to isomorphism; these are digraphs with uniform outdegree 1, also called mapping patterns, finite endofunctions, or finite discrete-time dynamical systems. This procedure is based on a reverse search algorithm for the generation of connected functional digraphs, which is then applied as a subroutine for the generation of arbitrary ones. Both algorithms output solutions with $O(n^2)$ delay and require linear space with respect to the number $n$ of vertices.

相關內容

Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.

The most efficient automated way to construct a large class of quantum photonic experiments is via abstract representation of graphs with certain properties. While new directions were explored using Artificial intelligence and SAT solvers to find such graphs, it becomes computationally infeasible to do so as the size of the graph increases. So, we take an analytical approach and introduce the technique of local sparsification on experiment graphs, using which we answer a crucial open question in experimental quantum optics, namely whether certain complex entangled quantum states can be constructed. This provides us with more insights into quantum resource theory, the limitation of specific quantum photonic systems and initiates the use of graph-theoretic techniques for designing quantum physics experiments.

With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the convex hull of the set of binary points satisfying a collection of equations containing pseudo-Boolean functions. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.

This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.

An essential problem in statistics and machine learning is the estimation of expectations involving PDFs with intractable normalizing constants. The self-normalized importance sampling (SNIS) estimator, which normalizes the IS weights, has become the standard approach due to its simplicity. However, the SNIS has been shown to exhibit high variance in challenging estimation problems, e.g, involving rare events or posterior predictive distributions in Bayesian statistics. Further, most of the state-of-the-art adaptive importance sampling (AIS) methods adapt the proposal as if the weights had not been normalized. In this paper, we propose a framework that considers the original task as estimation of a ratio of two integrals. In our new formulation, we obtain samples from a joint proposal distribution in an extended space, with two of its marginals playing the role of proposals used to estimate each integral. Importantly, the framework allows us to induce and control a dependency between both estimators. We propose a construction of the joint proposal that decomposes in two (multivariate) marginals and a coupling. This leads to a two-stage framework suitable to be integrated with existing or new AIS and/or variational inference (VI) algorithms. The marginals are adapted in the first stage, while the coupling can be chosen and adapted in the second stage. We show in several examples the benefits of the proposed methodology, including an application to Bayesian prediction with misspecified models.

Factor models are widely used for dimension reduction in the analysis of multivariate data. This is achieved through decomposition of a p x p covariance matrix into the sum of two components. Through a latent factor representation, they can be interpreted as a diagonal matrix of idiosyncratic variances and a shared variation matrix, that is, the product of a p x k factor loadings matrix and its transpose. If k << p, this defines a parsimonious factorisation of the covariance matrix. Historically, little attention has been paid to incorporating prior information in Bayesian analyses using factor models where, at best, the prior for the factor loadings is order invariant. In this work, a class of structured priors is developed that can encode ideas of dependence structure about the shared variation matrix. The construction allows data-informed shrinkage towards sensible parametric structures while also facilitating inference over the number of factors. Using an unconstrained reparameterisation of stationary vector autoregressions, the methodology is extended to stationary dynamic factor models. For computational inference, parameter-expanded Markov chain Monte Carlo samplers are proposed, including an efficient adaptive Gibbs sampler. Two substantive applications showcase the scope of the methodology and its inferential benefits.

In the study of extremes, the presence of asymptotic independence signifies that extreme events across multiple variables are probably less likely to occur together. Although well-understood in a bivariate context, the concept remains relatively unexplored when addressing the nuances of joint occurrence of extremes in higher dimensions. In this paper, we propose a notion of mutual asymptotic independence to capture the behavior of joint extremes in dimensions larger than two and contrast it with the classical notion of (pairwise) asymptotic independence. Furthermore, we define $k$-wise asymptotic independence which lies in between pairwise and mutual asymptotic independence. The concepts are compared using examples of Archimedean, Gaussian and Marshall-Olkin copulas among others. Notably, for the popular Gaussian copula, we provide explicit conditions on the correlation matrix for mutual asymptotic independence to hold; moreover, we are able to compute exact tail orders for various tail events.

When the target of inference is a real-valued function of probability parameters in the k-sample multinomial problem, variance estimation may be challenging. In small samples, methods like the nonparametric bootstrap or delta method may perform poorly. We propose a novel general method in this setting for computing exact p-values and confidence intervals which means that type I error rates are correctly bounded and confidence intervals have at least nominal coverage at all sample sizes. Our method is applicable to any real-valued function of multinomial probabilities, accommodating an arbitrary number of samples with varying category counts. We describe the method and provide an implementation of it in R, with some computational optimization to ensure broad applicability. Simulations demonstrate our method's ability to maintain correct coverage rates in settings where the nonparametric bootstrap fails.

A non-linear complex system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic, as each provides only a partial view and much information is lost during data extraction. Combining multiple diagnostics also results in imperfect projections of the system's physics. By identifying hidden inter-correlations between diagnostics, we can leverage mutual support to fill in these gaps, but uncovering these inter-correlations analytically is too complex. We introduce a groundbreaking machine learning methodology to address this issue. Our multimodal approach generates super resolution data encompassing multiple physics phenomena, capturing detailed structural evolution and responses to perturbations previously unobservable. This methodology addresses a critical problem in fusion plasmas: the Edge Localized Mode (ELM), a plasma instability that can severely damage reactor walls. One method to stabilize ELM is using resonant magnetic perturbation to trigger magnetic islands. However, low spatial and temporal resolution of measurements limits the analysis of these magnetic islands due to their small size, rapid dynamics, and complex interactions within the plasma. With super-resolution diagnostics, we can experimentally verify theoretical models of magnetic islands for the first time, providing unprecedented insights into their role in ELM stabilization. This advancement aids in developing effective ELM suppression strategies for future fusion reactors like ITER and has broader applications, potentially revolutionizing diagnostics in fields such as astronomy, astrophysics, and medical imaging.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司