In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies in the literature have developed such formulations for many ML predictors, with a particular emphasis on Artificial Neural Networks (ANNs) due to their significant interest in many applications. However, ANNs frequently contain a large number of parameters, resulting in MIP formulations that are impractical to solve, thereby impeding scalability. In fact, the ML community has already introduced several techniques to reduce the parameter count of ANNs without compromising their performance, since the substantial size of modern ANNs presents challenges for ML applications as it significantly impacts computational efforts during training and necessitates significant memory resources for storage. In this paper, we showcase the effectiveness of pruning, one of these techniques, when applied to ANNs prior to their integration into MIPs. By pruning the ANN, we achieve significant improvements in the speed of the solution process. We discuss why pruning is more suitable in this context compared to other ML compression techniques, and we identify the most appropriate pruning strategies. To highlight the potential of this approach, we conduct experiments using feed-forward neural networks with multiple layers to construct adversarial examples. Our results demonstrate that pruning offers remarkable reductions in solution times without hindering the quality of the final decision, enabling the resolution of previously unsolvable instances.
Recent work demonstrated the existence of Boolean functions for which Shapley values provide misleading information about the relative importance of features in rule-based explanations. Such misleading information was broadly categorized into a number of possible issues. Each of those issues relates with features being relevant or irrelevant for a prediction, and all are significant regarding the inadequacy of Shapley values for rule-based explainability. This earlier work devised a brute-force approach to identify Boolean functions, defined on small numbers of features, and also associated instances, which displayed such inadequacy-revealing issues, and so served as evidence to the inadequacy of Shapley values for rule-based explainability. However, an outstanding question is how frequently such inadequacy-revealing issues can occur for Boolean functions with arbitrary large numbers of features. It is plain that a brute-force approach would be unlikely to provide insights on how to tackle this question. This paper answers the above question by proving that, for any number of features, there exist Boolean functions that exhibit one or more inadequacy-revealing issues, thereby contributing decisive arguments against the use of Shapley values as the theoretical underpinning of feature-attribution methods in explainability.
Industry 4.0 has brought to attention the need for a connected, flexible, and autonomous production environment. The New Radio (NR)-sidelink, which was introduced by the third-generation partnership project (3GPP) in Release 16, can be particularly helpful for factories that need to facilitate cooperative and close-range communication. Automated Guided Vehicles (AGVs) are important for material handling and carriage within these environments, and using NR-sidelink communication can further enhance their performance. An efficient resource allocation mechanism is required to ensure reliable communication and avoid interference between AGVs and other wireless systems in the factory using NR-sidelink. This work evaluates the 3GPP standardized resource allocation algorithm for NR-sidelink for a use case of cooperative carrying AGVs. We suggest further improvements that are tailored to the quality of service (QoS) requirements of an indoor factory communication scenario with cooperative AGVs.The use of NR-sidelink communication has the potential to help meet the QoS requirements for different Industry 4.0 use cases. This work can be a foundation for further improvements in NR-sidelink in 3GPP Release 18 and beyond.
Artificial Intelligence for IT Operations (AIOps) leverages AI approaches to handle the massive amount of data generated during the operations of software systems. Prior works have proposed various AIOps solutions to support different tasks in system operations and maintenance, such as anomaly detection. In this study, we conduct an in-depth analysis of open-source AIOps projects to understand the characteristics of AIOps in practice. We first carefully identify a set of AIOps projects from GitHub and analyze their repository metrics (e.g., the used programming languages). Then, we qualitatively examine the projects to understand their input data, analysis techniques, and goals. Finally, we assess the quality of these projects using different quality metrics, such as the number of bugs. To provide context, we also sample two sets of baseline projects from GitHub: a random sample of machine learning projects and a random sample of general-purposed projects. By comparing different metrics between our identified AIOps projects and these baselines, we derive meaningful insights. Our results reveal a recent and growing interest in AIOps solutions. However, the quality metrics indicate that AIOps projects suffer from more issues than our baseline projects. We also pinpoint the most common issues in AIOps approaches and discuss potential solutions to address these challenges. Our findings offer valuable guidance to researchers and practitioners, enabling them to comprehend the current state of AIOps practices and shed light on different ways of improving AIOps' weaker aspects. To the best of our knowledge, this work marks the first attempt to characterize open-source AIOps projects.
Deep Learning(DL) and Machine Learning(ML) applications are rapidly increasing in recent days. Massive amounts of data are being generated over the internet which can derive meaningful results by the use of ML and DL algorithms. Hardware resources and open-source libraries have made it easy to implement these algorithms. Tensorflow and Pytorch are one of the leading frameworks for implementing ML projects. By using those frameworks, we can trace the operations executed on both GPU and CPU to analyze the resource allocations and consumption. This paper presents the time and memory allocation of CPU and GPU while training deep neural networks using Pytorch. This paper analysis shows that GPU has a lower running time as compared to CPU for deep neural networks. For a simpler network, there are not many significant improvements in GPU over the CPU.
There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation. Instead, they intriguingly interact with each other. In this paper, we introduce the notion of {\em topological graph} for 3D symmetric tensor fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our approach by applying it to solid mechanics and material science data sets.
Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.
The introduction and advancements in Local Differential Privacy (LDP) variants have become a cornerstone in addressing the privacy concerns associated with the vast data produced by smart devices, which forms the foundation for data-driven decision-making in crowdsensing. While harnessing the power of these immense data sets can offer valuable insights, it simultaneously poses significant privacy risks for the users involved. LDP, a distinguished privacy model with a decentralized architecture, stands out for its capability to offer robust privacy assurances for individual users during data collection and analysis. The essence of LDP is its method of locally perturbing each user's data on the client-side before transmission to the server-side, safeguarding against potential privacy breaches at both ends. This article offers an in-depth exploration of LDP, emphasizing its models, its myriad variants, and the foundational structure of LDP algorithms.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.