亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a simple method to distill and detect backdoor patterns within an image: \emph{Cognitive Distillation} (CD). The idea is to extract the "minimal essence" from an input image responsible for the model's prediction. CD optimizes an input mask to extract a small pattern from the input image that can lead to the same model output (i.e., logits or deep features). The extracted pattern can help understand the cognitive mechanism of a model on clean vs. backdoor images and is thus called a \emph{Cognitive Pattern} (CP). Using CD and the distilled CPs, we uncover an interesting phenomenon of backdoor attacks: despite the various forms and sizes of trigger patterns used by different attacks, the CPs of backdoor samples are all surprisingly and suspiciously small. One thus can leverage the learned mask to detect and remove backdoor examples from poisoned training datasets. We conduct extensive experiments to show that CD can robustly detect a wide range of advanced backdoor attacks. We also show that CD can potentially be applied to help detect potential biases from face datasets. Code is available at \url{//github.com/HanxunH/CognitiveDistillation}.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Since the recent advent of regulations for data protection (e.g., the General Data Protection Regulation), there has been increasing demand in deleting information learned from sensitive data in pre-trained models without retraining from scratch. The inherent vulnerability of neural networks towards adversarial attacks and unfairness also calls for a robust method to remove or correct information in an instance-wise fashion, while retaining the predictive performance across remaining data. To this end, we define instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model, by either misclassifying each instance away from its original prediction or relabeling the instance to a different label. We also propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information. Both methods only require the pre-trained model and data instances to forget, allowing painless application to real-life settings where the entire training set is unavailable. Through extensive experimentation on various image classification benchmarks, we show that our approach effectively preserves knowledge of remaining data while unlearning given instances in both single-task and continual unlearning scenarios.

While text-to-image synthesis currently enjoys great popularity among researchers and the general public, the security of these models has been neglected so far. Many text-guided image generation models rely on pre-trained text encoders from external sources, and their users trust that the retrieved models will behave as promised. Unfortunately, this might not be the case. We introduce backdoor attacks against text-guided generative models and demonstrate that their text encoders pose a major tampering risk. Our attacks only slightly alter an encoder so that no suspicious model behavior is apparent for image generations with clean prompts. By then inserting a single character trigger into the prompt, e.g., a non-Latin character or emoji, the adversary can trigger the model to either generate images with pre-defined attributes or images following a hidden, potentially malicious description. We empirically demonstrate the high effectiveness of our attacks on Stable Diffusion and highlight that the injection process of a single backdoor takes less than two minutes. Besides phrasing our approach solely as an attack, it can also force an encoder to forget phrases related to certain concepts, such as nudity or violence, and help to make image generation safer.

Knowledge tracing (KT) is a crucial technique to predict students' future performance by observing their historical learning processes. Due to the powerful representation ability of deep neural networks, remarkable progress has been made by using deep learning techniques to solve the KT problem. The majority of existing approaches rely on the \emph{homogeneous question} assumption that questions have equivalent contributions if they share the same set of knowledge components. Unfortunately, this assumption is inaccurate in real-world educational scenarios. Furthermore, it is very challenging to interpret the prediction results from the existing deep learning based KT models. Therefore, in this paper, we present QIKT, a question-centric interpretable KT model to address the above challenges. The proposed QIKT approach explicitly models students' knowledge state variations at a fine-grained level with question-sensitive cognitive representations that are jointly learned from a question-centric knowledge acquisition module and a question-centric problem solving module. Meanwhile, the QIKT utilizes an item response theory based prediction layer to generate interpretable prediction results. The proposed QIKT model is evaluated on three public real-world educational datasets. The results demonstrate that our approach is superior on the KT prediction task, and it outperforms a wide range of deep learning based KT models in terms of prediction accuracy with better model interpretability. To encourage reproducible results, we have provided all the datasets and code at \url{//pykt.org/}.

Deep supervision, which involves extra supervisions to the intermediate features of a neural network, was widely used in image classification in the early deep learning era since it significantly reduces the training difficulty and eases the optimization like avoiding gradient vanish over the vanilla training. Nevertheless, with the emergence of normalization techniques and residual connection, deep supervision in image classification was gradually phased out. In this paper, we revisit deep supervision for masked image modeling (MIM) that pre-trains a Vision Transformer (ViT) via a mask-and-predict scheme. Experimentally, we find that deep supervision drives the shallower layers to learn more meaningful representations, accelerates model convergence, and expands attention diversities. Our approach, called DeepMIM, significantly boosts the representation capability of each layer. In addition, DeepMIM is compatible with many MIM models across a range of reconstruction targets. For instance, using ViT-B, DeepMIM on MAE achieves 84.2 top-1 accuracy on ImageNet, outperforming MAE by +0.6. By combining DeepMIM with a stronger tokenizer CLIP, our model achieves state-of-the-art performance on various downstream tasks, including image classification (85.6 top-1 accuracy on ImageNet-1K, outperforming MAE-CLIP by +0.8), object detection (52.8 APbox on COCO) and semantic segmentation (53.1 mIoU on ADE20K). Code and models are available at //github.com/OliverRensu/DeepMIM.

Detecting objects in aerial images is challenging because they are typically composed of crowded small objects distributed non-uniformly over high-resolution images. Density cropping is a widely used method to improve this small object detection where the crowded small object regions are extracted and processed in high resolution. However, this is typically accomplished by adding other learnable components, thus complicating the training and inference over a standard detection process. In this paper, we propose an efficient Cascaded Zoom-in (CZ) detector that re-purposes the detector itself for density-guided training and inference. During training, density crops are located, labeled as a new class, and employed to augment the training dataset. During inference, the density crops are first detected along with the base class objects, and then input for a second stage of inference. This approach is easily integrated into any detector, and creates no significant change in the standard detection process, like the uniform cropping approach popular in aerial image detection. Experimental results on the aerial images of the challenging VisDrone and DOTA datasets verify the benefits of the proposed approach. The proposed CZ detector also provides state-of-the-art results over uniform cropping and other density cropping methods on the VisDrone dataset, increasing the detection mAP of small objects by more than 3 points.

Propelled by the omnipresence of versatile data capture, communication, and computing technologies, physical sensing has revolutionized the avenue for decisively interpreting the real world. However, various limitations hinder physical sensing's effectiveness in critical scenarios such as disaster response and urban anomaly detection. Meanwhile, social sensing is contriving as a pervasive sensing paradigm leveraging observations from human participants equipped with portable devices and ubiquitous Internet connectivity to perceive the environment. Despite its virtues, social sensing also inherently suffers from a few drawbacks (e.g., inconsistent reliability and uncertain data provenance). Motivated by the complementary strengths of the two sensing modes, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that explores the collective intelligence of humans and machines to reconstruct the "state of the world", both physically and socially. While a good number of interesting SPS applications have been studied, several critical unsolved challenges still exist in SPS. In this paper, we provide a comprehensive survey of SPS, emphasizing its definition, key enablers, state-of-the-art applications, potential research challenges, and roadmap for future work. This paper intends to bridge the knowledge gap of existing sensing-focused survey papers by thoroughly examining the various aspects of SPS crucial for building potent SPS systems.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.

北京阿比特科技有限公司