亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Remaining useful life prediction (RUL) is one of the key technologies of condition-based maintenance, which is important to maintain the reliability and safety of industrial equipments. While deep learning has achieved great success in RUL prediction, existing methods have difficulties in processing long sequences and extracting information from the sensor and time step aspects. In this paper, we propose Dual Aspect Self-attention based on Transformer (DAST), a novel deep RUL prediction method. DAST consists of two encoders, which work in parallel to simultaneously extract features of different sensors and time steps. Solely based on self-attention, the DAST encoders are more effective in processing long data sequences, and are capable of adaptively learning to focus on more important parts of input. Moreover, the parallel feature extraction design avoids mutual influence of information from two aspects. Experimental results on two real turbofan engine datasets show that our method significantly outperforms state-of-the-art methods.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · R-CNN · 模型評估 · 3D · Better ·
2020 年 12 月 31 日

Recent advances on 3D object detection heavily rely on how the 3D data are represented, \emph{i.e.}, voxel-based or point-based representation. Many existing high performance 3D detectors are point-based because this structure can better retain precise point positions. Nevertheless, point-level features lead to high computation overheads due to unordered storage. In contrast, the voxel-based structure is better suited for feature extraction but often yields lower accuracy because the input data are divided into grids. In this paper, we take a slightly different viewpoint -- we find that precise positioning of raw points is not essential for high performance 3D object detection and that the coarse voxel granularity can also offer sufficient detection accuracy. Bearing this view in mind, we devise a simple but effective voxel-based framework, named Voxel R-CNN. By taking full advantage of voxel features in a two stage approach, our method achieves comparable detection accuracy with state-of-the-art point-based models, but at a fraction of the computation cost. Voxel R-CNN consists of a 3D backbone network, a 2D bird-eye-view (BEV) Region Proposal Network and a detect head. A voxel RoI pooling is devised to extract RoI features directly from voxel features for further refinement. Extensive experiments are conducted on the widely used KITTI Dataset and the more recent Waymo Open Dataset. Our results show that compared to existing voxel-based methods, Voxel R-CNN delivers a higher detection accuracy while maintaining a real-time frame processing rate, \emph{i.e}., at a speed of 25 FPS on an NVIDIA RTX 2080 Ti GPU. The code will be make available soon.

Unsupervised aspect detection (UAD) aims at automatically extracting interpretable aspects and identifying aspect-specific segments (such as sentences) from online reviews. However, recent deep learning-based topic models, specifically aspect-based autoencoder, suffer from several problems, such as extracting noisy aspects and poorly mapping aspects discovered by models to the aspects of interest. To tackle these challenges, in this paper, we first propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task in order to learn better representations for aspects and review segments. Secondly, we introduce a high-resolution selective mapping (HRSMap) method to efficiently assign aspects discovered by the model to aspects of interest. We also propose using a knowledge distilling technique to further improve the aspect detection performance. Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets. Aspect interpretation results show that extracted aspects are meaningful, have good coverage, and can be easily mapped to aspects of interest. Ablation studies and attention weight visualization also demonstrate the effectiveness of SSA and the knowledge distilling method.

Potential Drug-Drug Interaction(DDI) occurring while treating complex or co-existing diseases with drug combinations may cause changes in drugs' pharmacological activity. Therefore, DDI prediction has been an important task in the medical healthy machine learning community. Graph-based learning methods have recently aroused widespread interest and are proved to be a priority for this task. However, these methods are often limited to exploiting the inter-view drug molecular structure and ignoring the drug's intra-view interaction relationship, vital to capturing the complex DDI patterns. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCN to encode DDI relationships and a bond-aware attentive message propagating method to capture drug molecular structure information in the MIRACLE learning stage. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Aspect-level sentiment classification aims to distinguish the sentiment polarities over one or more aspect terms in a sentence. Existing approaches mostly model different aspects in one sentence independently, which ignore the sentiment dependencies between different aspects. However, we find such dependency information between different aspects can bring additional valuable information. In this paper, we propose a novel aspect-level sentiment classification model based on graph convolutional networks (GCN) which can effectively capture the sentiment dependencies between multi-aspects in one sentence. Our model firstly introduces bidirectional attention mechanism with position encoding to model aspect-specific representations between each aspect and its context words, then employs GCN over the attention mechanism to capture the sentiment dependencies between different aspects in one sentence. We evaluate the proposed approach on the SemEval 2014 datasets. Experiments show that our model outperforms the state-of-the-art methods. We also conduct experiments to evaluate the effectiveness of GCN module, which indicates that the dependencies between different aspects is highly helpful in aspect-level sentiment classification.

Knowledge graph (KG) completion aims to fill the missing facts in a KG, where a fact is represented as a triple in the form of $(subject, relation, object)$. Current KG completion models compel two-thirds of a triple provided (e.g., $subject$ and $relation$) to predict the remaining one. In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset. Furthermore, our model is enabled by the sequential characteristic and thus capable of predicting the whole triples only given one entity. Our experiments demonstrated that our model achieved promising performance on this new triple prediction task.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.

北京阿比特科技有限公司