Despite the great current relevance of Artificial Intelligence, and the extraordinary innovations that this discipline has brought to many fields -among which, without a doubt, medicine is found-, experts in medical applications of Artificial Intelligence are looking for new alternatives to solve problems for which current Artificial Intelligence programs do not provide with optimal solutions. For this, one promising option could be the use of the concepts and ideas of Quantum Mechanics, for the construction of quantum-based Artificial Intelligence systems. From a hybrid classical-quantum perspective, this article deals with the application of quantum computing techniques for the staging of Invasive Ductal Carcinoma of the breast. It includes: (1) a general explanation of a classical, and well-established, approach for medical reasoning, (2) a description of the clinical problem, (3) a conceptual model for staging invasive ductal carcinoma, (4) some basic notions about Quantum Rule-Based Systems, (5) a step-by-step explanation of the proposed approach for quantum staging of the invasive ductal carcinoma, and (6) the results obtained after running the quantum system on a significant number of use cases. A detailed discussion is also provided at the end of this paper.
Change-point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large-scale, high-dimensional, and complex streaming data call for computationally (memory) efficient sequential change-point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade-off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change-point detection procedures, ranging from classic sequential change-point detection algorithms to more recent non-parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which still provides useful techniques for analyzing new procedures.
Deep learning becomes an elevated context regarding disposing of many machine learning tasks and has shown a breakthrough upliftment to extract features from unstructured data. Though this flourishing context is developing in the medical image processing sector, scarcity of problem-dependent training data has become a larger issue in the way of easy application of deep learning in the medical sector. To unravel the confined data source, researchers have developed a model that can solve machine learning problems with fewer data called ``Few shot learning". Few hot learning algorithms determine to solve the data limitation problems by extracting the characteristics from a small dataset through classification and segmentation methods. In the medical sector, there is frequently a shortage of available datasets in respect of some confidential diseases. Therefore, Few shot learning gets the limelight in this data scarcity sector. In this chapter, the background and basic overview of a few shots of learning is represented. Henceforth, the classification of few-shot learning is described also. Even the paper shows a comparison of methodological approaches that are applied in medical image analysis over time. The current advancement in the implementation of few-shot learning concerning medical imaging is illustrated. The future scope of this domain in the medical imaging sector is further described.
We show that a topological quantum computer based on the evaluation of a Witten-Reshetikhin-Turaev TQFT invariant of knots can always be arranged so that the knot diagrams with which one computes are diagrams of hyperbolic knots. The diagrams can even be arranged to have additional nice properties, such as being alternating with minimal crossing number. Moreover, the reduction is polynomially uniform in the self-braiding exponent of the coloring object. Various complexity-theoretic hardness results regarding the calculation of quantum invariants of knots follow as corollaries. In particular, we argue that the hyperbolic geometry of knots is unlikely to be useful for topological quantum computation.
Noisy Intermediate-Scale Quantum Computing (NISQ) has dominated headlines in recent years, with the longer-term vision of Fault-Tolerant Quantum Computation (FTQC) offering significant potential albeit at currently intractable resource costs and quantum error correction (QEC) overheads. For problems of interest, FTQC will require millions of physical qubits with long coherence times, high-fidelity gates, and compact sizes to surpass classical systems. Just as heterogeneous specialization has offered scaling benefits in classical computing, it is likewise gaining interest in FTQC. However, systematic use of heterogeneity in either hardware or software elements of FTQC systems remains a serious challenge due to the vast design space and variable physical constraints. This paper meets the challenge of making heterogeneous FTQC design practical by introducing HetArch, a toolbox for designing heterogeneous quantum systems, and using it to explore heterogeneous design scenarios. Using a hierarchical approach, we successively break quantum algorithms into smaller operations (akin to classical application kernels), thus greatly simplifying the design space and resulting tradeoffs. Specializing to superconducting systems, we then design optimized heterogeneous hardware composed of varied superconducting devices, abstracting physical constraints into design rules that enable devices to be assembled into standard cells optimized for specific operations. Finally, we provide a heterogeneous design space exploration framework which reduces the simulation burden by a factor of 10^4 or more and allows us to characterize optimal design points. We use these techniques to design superconducting quantum modules for entanglement distillation, error correction, and code teleportation, reducing error rates by 2.6x, 10.7x, and 3.0x compared to homogeneous systems.
In this article, we develop an interdisciplinary analysis of MEV which desires to merge the gap that exists between technical and legal research supporting policymakers in their regulatory decisions concerning blockchains, DeFi and associated risks. Consequently, this article is intended for both technical and legal audiences, and while we abstain from a detailed legal analysis, we aim to open a policy discussion regarding decentralized governance design at the block building layer as the place where MEV occurs. Maximal Extractable Value or MEV has been one of the major concerns in blockchain designs as it creates a centralizing force which ultimately affects user transactions. In this article, we dive into the technicality behind MEV, where we explain the concept behind the novel Proposal Builder Separation design as an effort by Flashbots to increase decentralization through modularity. We underline potential vulnerability factors under the PBS design, which open space for MEV extracting adversarial strategies by inside participants. We discuss the shift of trust from validators to builders in PoS blockchains such as Ethereum, acknowledging the impact that the later ones may have on users' transactions (in terms of front running) and censorship resistance (in terms of transaction inclusion). We recognize that under PBS, centralized (dominant) entities such as builders could potentially harm users by extracting MEV via front running strategies. Finally, we suggest adequate design and policy measures which could potentially mitigate these negative effects while protecting blockchain users.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.