(Economic) nonlinear model predictive control ((e)NMPC) requires dynamic models that are sufficiently accurate and computationally tractable. Data-driven surrogate models for mechanistic models can reduce the computational burden of (e)NMPC; however, such models are typically trained by system identification for maximum prediction accuracy on simulation samples and perform suboptimally in (e)NMPC. We present a method for end-to-end reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC. We apply our method to two applications derived from an established nonlinear continuous stirred-tank reactor model. The controller performance is compared to that of (e)NMPCs utilizing models trained using system identification, and model-free neural network controllers trained using reinforcement learning. We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC, and that, in contrast to the neural network controllers, the (e)NMPC controllers can react to changes in the control setting without retraining.
We provide tools to help automate the error analysis of algorithms that evaluate simple functions over the floating-point numbers. The aim is to obtain tight relative error bounds for these algorithms, expressed as a function of the unit round-off. Due to the discrete nature of the set of floating-point numbers, the largest errors are often intrinsically "arithmetic" in the sense that their appearance may depend on specific bit patterns in the binary representations of intermediate variables, which may be present only for some precisions. We focus on generic (i.e., parameterized by the precision) and analytic over-estimations that still capture the correlations between the errors made at each step of the algorithms. Using methods from computer algebra, which we adapt to the particular structure of the polynomial systems that encode the errors, we obtain bounds with a linear term in the unit round-off that is sharp in manycases. An explicit quadratic bound is given, rather than the $O()$-estimate that is more common in this area. This is particularly important when using low precision formats, which are increasingly common in modern processors. Using this approach, we compare five algorithms for computing the hypotenuse function, ranging from elementary to quite challenging.
Understanding the interpretation of machine learning (ML) models has been of paramount importance when making decisions with societal impacts such as transport control, financial activities, and medical diagnosis. While current model interpretation methodologies focus on using locally linear functions to approximate the models or creating self-explanatory models that give explanations to each input instance, they do not focus on model interpretation at the subpopulation level, which is the understanding of model interpretations across different subset aggregations in a dataset. To address the challenges of providing explanations of an ML model across the whole dataset, we propose SUBPLEX, a visual analytics system to help users understand black-box model explanations with subpopulation visual analysis. SUBPLEX is designed through an iterative design process with machine learning researchers to address three usage scenarios of real-life machine learning tasks: model debugging, feature selection, and bias detection. The system applies novel subpopulation analysis on ML model explanations and interactive visualization to explore the explanations on a dataset with different levels of granularity. Based on the system, we conduct user evaluation to assess how understanding the interpretation at a subpopulation level influences the sense-making process of interpreting ML models from a user's perspective. Our results suggest that by providing model explanations for different groups of data, SUBPLEX encourages users to generate more ingenious ideas to enrich the interpretations. It also helps users to acquire a tight integration between programming workflow and visual analytics workflow. Last but not least, we summarize the considerations observed in applying visualization to machine learning interpretations.
The robust constrained Markov decision process (RCMDP) is a recent task-modelling framework for reinforcement learning that incorporates behavioural constraints and that provides robustness to errors in the transition dynamics model through the use of an uncertainty set. Simulating RCMDPs requires computing the worst-case dynamics based on value estimates for each state, an approach which has previously been used in the Robust Constrained Policy Gradient (RCPG). Highlighting potential downsides of RCPG such as not robustifying the full constrained objective and the lack of incremental learning, this paper introduces two algorithms, called RCPG with Robust Lagrangian and Adversarial RCPG. RCPG with Robust Lagrangian modifies RCPG by taking the worst-case dynamics based on the Lagrangian rather than either the value or the constraint. Adversarial RCPG also formulates the worst-case dynamics based on the Lagrangian but learns this directly and incrementally as an adversarial policy through gradient descent rather than indirectly and abruptly through constrained optimisation on a sorted value list. A theoretical analysis first derives the Lagrangian policy gradient for the policy optimisation of both proposed algorithms and then the adversarial policy gradient to learn the adversary for Adversarial RCPG. Empirical experiments injecting perturbations in inventory management and safe navigation tasks demonstrate the competitive performance of both algorithms compared to traditional RCPG variants as well as non-robust and non-constrained ablations. In particular, Adversarial RCPG ranks among the top two performing algorithms on all tests.
Domain experts can play a crucial role in guiding data scientists to optimize machine learning models while ensuring contextual relevance for downstream use. However, in current workflows, such collaboration is challenging due to differing expertise, abstract documentation practices, and lack of access and visibility into low-level implementation artifacts. To address these challenges and enable domain expert participation, we introduce CellSync, a collaboration framework comprising (1) a Jupyter Notebook extension that continuously tracks changes to dataframes and model metrics and (2) a Large Language Model powered visualization dashboard that makes those changes interpretable to domain experts. Through CellSync's cell-level dataset visualization with code summaries, domain experts can interactively examine how individual data and modeling operations impact different data segments. The chat features enable data-centric conversations and targeted feedback to data scientists. Our preliminary evaluation shows that CellSync provides transparency and promotes critical discussions about the intents and implications of data operations.
Deterministic and nondeterministic finite automata (DFAs and NFAs) are abstract models of computation commonly taught in introductory computing theory courses. These models have important applications (such as fast regular expression matching), and are used to introduce formal language theory. Undergraduate students often struggle with understanding these models at first, due to the level of abstraction. As a result, various pedagogical tools have been developed to allow students to practice with these models. We introduce the FSM Builder, a new pedagogical tool enabling students to practice constructing DFAs and NFAs with a graphical editor, giving personalized feedback and partial credit. The algorithms used for generating these are heavily inspired by previous works. The key advantages to its competitors are greater flexibility and scalability. This is because the FSM Builder is implemented using efficient algorithms from an open source package, allowing for easy extension and question creation. We discuss the implementation of the tool, how it stands out from previous tools, and takeaways from experiences of using the tool in multiple large courses. Survey results indicate the interface and feedback provided by the tool were useful to students.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.