Asymptotic separation index is a parameter that measures how easily a Borel graph can be approximated by its subgraphs with finite components. In contrast to the more classical notion of hyperfiniteness, asymptotic separation index is well-suited for combinatorial applications in the Borel setting. The main result of this paper is a Borel version of the Lov\'asz Local Lemma -- a powerful general-purpose tool in probabilistic combinatorics -- under a finite asymptotic separation index assumption. As a consequence, we show that locally checkable labeling problems that are solvable by efficient randomized distributed algorithms admit Borel solutions on bounded degree Borel graphs with finite asymptotic separation index. From this we derive a number of corollaries, for example a Borel version of Brooks's theorem for graphs with finite asymptotic separation index.
We consider a new splitting based on the Sherman-Morrison-Woodbury formula, which is particularly effective with iterative methods for the numerical solution of large linear systems. These systems involve matrices that are perturbations of circulant or block circulant matrices, which commonly arise in the discretization of differential equations using finite element or finite difference methods. We prove the convergence of the new iteration without making any assumptions regarding the symmetry or diagonal-dominance of the matrix. To illustrate the efficacy of the new iteration we present various applications. These include extensions of the new iteration to block matrices that arise in certain saddle point problems as well as two-dimensional finite difference discretizations. The new method exhibits fast convergence in all of the test cases we used. It has minimal storage requirements, straightforward implementation and compatibility with nearly circulant matrices via the Fast Fourier Transform. For this reasons it can be a valuable tool for the solution of various finite element and finite difference discretizations of differential equations.
We characterize the convergence properties of traditional best-response (BR) algorithms in computing solutions to mixed-integer Nash equilibrium problems (MI-NEPs) that turn into a class of monotone Nash equilibrium problems (NEPs) once relaxed the integer restrictions. We show that the sequence produced by a Jacobi/Gauss-Seidel BR method always approaches a bounded region containing the entire solution set of the MI-NEP, whose tightness depends on the problem data, and it is related to the degree of strong monotonicity of the relaxed NEP. When the underlying algorithm is applied to the relaxed NEP, we establish data-dependent complexity results characterizing its convergence to the unique solution of the NEP. In addition, we derive one of the very few sufficient conditions for the existence of solutions to MI-NEPs. The theoretical results developed bring important practical advantages that are illustrated on a numerical instance of a smart building control application.
We consider two classes of natural stochastic processes on finite unlabeled graphs. These are Euclidean stochastic optimization algorithms on the adjacency matrix of weighted graphs and a modified version of the Metropolis MCMC algorithm on stochastic block models over unweighted graphs. In both cases we show that, as the size of the graph goes to infinity, the random trajectories of the stochastic processes converge to deterministic curves on the space of measure-valued graphons. Measure-valued graphons, introduced by Lov\'{a}sz and Szegedy in \cite{lovasz2010decorated}, are a refinement of the concept of graphons that can distinguish between two infinite exchangeable arrays that give rise to the same graphon limit. We introduce new metrics on this space which provide us with a natural notion of convergence for our limit theorems. This notion is equivalent to the convergence of infinite-exchangeable arrays. Under suitable assumptions and a specified time-scaling, the Metropolis chain admits a diffusion limit as the number of vertices go to infinity. We then demonstrate that, in an appropriately formulated zero-noise limit, the stochastic process of adjacency matrices of this diffusion converges to a deterministic gradient flow curve on the space of graphons introduced in\cite{Oh2023}. A novel feature of this approach is that it provides a precise exponential convergence rate for the Metropolis chain in a certain limiting regime. The connection between a natural Metropolis chain commonly used in exponential random graph models and gradient flows on graphons, to the best of our knowledge, is new in the literature as well.
The categorical Gini correlation, $\rho_g$, was proposed by Dang et al. to measure the dependence between a categorical variable, $Y$ , and a numerical variable, $X$. It has been shown that $\rho_g$ has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for $\rho_g$. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.
This paper presents a new database consisting of concurrent articulatory and acoustic speech data. The articulatory data correspond to ultrasound videos of the vocal tract dynamics, which allow the visualization of the tongue upper contour during the speech production process. Acoustic data is composed of 30 short sentences that were acquired by a directional cardioid microphone. This database includes data from 17 young subjects (8 male and 9 female) from the Santander region in Colombia, who reported not having any speech pathology.
Quantum information scrambling is a unitary process that destroys local correlations and spreads information throughout the system, effectively hiding it in nonlocal degrees of freedom. In principle, unscrambling this information is possible with perfect knowledge of the unitary dynamics[arXiv:1710.03363]. However, this work demonstrates that even without previous knowledge of the internal dynamics, information can be efficiently decoded from an unknown scrambler by monitoring the outgoing information of a local subsystem. Surprisingly, we show that scramblers with unknown internal dynamics, which are rapidly mixing but not fully chaotic, can be decoded using Clifford decoders. The essential properties of a scrambling unitary can be efficiently recovered, even if the process is exponentially complex. Specifically, we establish that a unitary operator composed of $t$ non-Clifford gates admits a Clifford decoder up to $t\le n$.
This work is concerned with cone-beam computed tomography with circular source trajectory, where the reconstruction inverse problem requires an accurate knowledge of source, detector and rotational axis relative positions and orientations. We address this problem as a preceding step of the reconstruction process directly from the acquired projections. The method estimates both the detector shift (orthogonal to focal and rotational axes) and the in-plane detector rotation, relative to source and rotational axis. The obtained algorithm is based on a fan-beam symmetry condition and the variable projection optimization approach with a low computational cost. Therefore, the alignment problem for fan-beam tomography is addressed as well. The methods are validated with simulated and real industrial tomographic data with code examples available for both fan- and cone-beam geometries.
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted historical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evolution of knowledge within the `Sacrobosco Collection' -- a digitized collection of 359 early modern printed editions of textbooks on astronomy used at European universities between 1472 and 1650 -- roughly 76,000 pages, many of which contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught at European universities.
Given samples from two non-negative random variables, we propose a family of tests for the null hypothesis that one random variable stochastically dominates the other at the second order. Test statistics are obtained as functionals of the difference between the identity and the Lorenz P-P plot, defined as the composition between the inverse unscaled Lorenz curve of one distribution and the unscaled Lorenz curve of the other. We determine upper bounds for such test statistics under the null hypothesis and derive their limit distribution, to be approximated via bootstrap procedures. We then establish the asymptotic validity of the tests under relatively mild conditions and investigate finite sample properties through simulations. The results show that our testing approach can be a valid alternative to classic methods based on the difference of the integrals of the cumulative distribution functions, which require bounded support and struggle to detect departures from the null in some cases.
We propose a novel surrogate modelling approach to efficiently and accurately approximate the response of complex dynamical systems driven by time-varying exogenous excitations over extended time periods. Our approach, namely manifold nonlinear autoregressive modelling with exogenous input (mNARX), involves constructing a problem-specific exogenous input manifold that is optimal for constructing autoregressive surrogates. The manifold, which forms the core of mNARX, is constructed incrementally by incorporating the physics of the system, as well as prior expert- and domain- knowledge. Because mNARX decomposes the full problem into a series of smaller sub-problems, each with a lower complexity than the original, it scales well with the complexity of the problem, both in terms of training and evaluation costs of the final surrogate. Furthermore, mNARX synergizes well with traditional dimensionality reduction techniques, making it highly suitable for modelling dynamical systems with high-dimensional exogenous inputs, a class of problems that is typically challenging to solve. Since domain knowledge is particularly abundant in physical systems, such as those found in civil and mechanical engineering, mNARX is well suited for these applications. We demonstrate that mNARX outperforms traditional autoregressive surrogates in predicting the response of a classical coupled spring-mass system excited by a one-dimensional random excitation. Additionally, we show that mNARX is well suited for emulating very high-dimensional time- and state-dependent systems, even when affected by active controllers, by surrogating the dynamics of a realistic aero-servo-elastic onshore wind turbine simulator. In general, our results demonstrate that mNARX offers promising prospects for modelling complex dynamical systems, in terms of accuracy and efficiency.