End-to-end automatic speech recognition (ASR) systems have made significant progress in general scenarios. However, it remains challenging to transcribe contextual named entities (NEs) in the contextual ASR scenario. Previous approaches have attempted to address this by utilizing the NE dictionary. These approaches treat entities as individual tokens and generate them token-by-token, which may result in incomplete transcriptions of entities. In this paper, we treat entities as indivisible wholes and introduce the idea of copying into ASR. We design a systematic mechanism called CopyNE, which can copy entities from the NE dictionary. By copying all tokens of an entity at once, we can reduce errors during entity transcription, ensuring the completeness of the entity. Experiments demonstrate that CopyNE consistently improves the accuracy of transcribing entities compared to previous approaches. Even when based on the strong Whisper, CopyNE still achieves notable improvements.
We present MVSGaussian, a new generalizable 3D Gaussian representation approach derived from Multi-View Stereo (MVS) that can efficiently reconstruct unseen scenes. Specifically, 1) we leverage MVS to encode geometry-aware Gaussian representations and decode them into Gaussian parameters. 2) To further enhance performance, we propose a hybrid Gaussian rendering that integrates an efficient volume rendering design for novel view synthesis. 3) To support fast fine-tuning for specific scenes, we introduce a multi-view geometric consistent aggregation strategy to effectively aggregate the point clouds generated by the generalizable model, serving as the initialization for per-scene optimization. Compared with previous generalizable NeRF-based methods, which typically require minutes of fine-tuning and seconds of rendering per image, MVSGaussian achieves real-time rendering with better synthesis quality for each scene. Compared with the vanilla 3D-GS, MVSGaussian achieves better view synthesis with less training computational cost. Extensive experiments on DTU, Real Forward-facing, NeRF Synthetic, and Tanks and Temples datasets validate that MVSGaussian attains state-of-the-art performance with convincing generalizability, real-time rendering speed, and fast per-scene optimization.
Domain-specific Entity Recognition holds significant importance in legal contexts, serving as a fundamental task that supports various applications such as question-answering systems, text summarization, machine translation, sentiment analysis, and information retrieval specifically within case law documents. Recent advancements have highlighted the efficacy of Large Language Models in natural language processing tasks, demonstrating their capability to accurately detect and classify domain-specific facts (entities) from specialized texts like clinical and financial documents. This research investigates the application of Large Language Models in identifying domain-specific entities (e.g., courts, petitioner, judge, lawyer, respondents, FIR nos.) within case law documents, with a specific focus on their aptitude for handling domain-specific language complexity and contextual variations. The study evaluates the performance of state-of-the-art Large Language Model architectures, including Large Language Model Meta AI 3, Mistral, and Gemma, in the context of extracting judicial facts tailored to Indian judicial texts. Mistral and Gemma emerged as the top-performing models, showcasing balanced precision and recall crucial for accurate entity identification. These findings confirm the value of Large Language Models in judicial documents and demonstrate how they can facilitate and quicken scientific research by producing precise, organised data outputs that are appropriate for in-depth examination.
Upper-limb amputees face tremendous difficulty in operating dexterous powered prostheses. Previous work has shown that aspects of prosthetic hand, wrist, or elbow control can be improved through "intelligent" control, by combining movement-based or gaze-based intent estimation with low-level robotic autonomy. However, no such solutions exist for whole-arm control. Moreover, hardware platforms for advanced prosthetic control are expensive, and existing simulation platforms are not well-designed for integration with robotics software frameworks. We present the Prosthetic Arm Control Testbed (ProACT), a platform for evaluating intelligent control methods for prosthetic arms in an immersive (Augmented Reality) simulation setting. Using ProACT with non-amputee participants, we compare performance in a Box-and-Blocks Task using a virtual myoelectric prosthetic arm, with and without intent estimation. Our results show that methods using intent estimation improve both user satisfaction and the degree of success in the task. To the best of our knowledge, this constitutes the first study of semi-autonomous control for complex whole-arm prostheses, the first study including sequential task modeling in the context of wearable prosthetic arms, and the first testbed of its kind. Towards the goal of supporting future research in intelligent prosthetics, the system is built upon on existing open-source frameworks for robotics.
Clinical named entity recognition (NER) aims to retrieve important entities within clinical narratives. Recent works have demonstrated that large language models (LLMs) can achieve strong performance in this task. While previous works focus on proprietary LLMs, we investigate how open NER LLMs, trained specifically for entity recognition, perform in clinical NER. In this paper, we aim to improve them through a novel framework, entity decomposition with filtering, or EDF. Our key idea is to decompose the entity recognition task into several retrievals of sub-entity types. We also introduce a filtering mechanism to remove incorrect entities. Our experimental results demonstrate the efficacy of our framework across all metrics, models, datasets, and entity types. Our analysis reveals that entity decomposition can recognize previously missed entities with substantial improvement. We further provide a comprehensive evaluation of our framework and an in-depth error analysis to pave future works.
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
In the Emotion Recognition in Conversation task, recent investigations have utilized attention mechanisms exploring relationships among utterances from intra- and inter-speakers for modeling emotional interaction between them. However, attributes such as speaker personality traits remain unexplored and present challenges in terms of their applicability to other tasks or compatibility with diverse model architectures. Therefore, this work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation. By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation as supplementary knowledge injected into the model to classify emotional labels for each utterance. Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets: IEMOCAP, MELD, and EmoryNLP, demonstrating the effectiveness and generalization of our model and showcasing its potential for adaptation to various conversation analysis tasks. Our source code is available at //github.com/yingjie7/BiosERC.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.