亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose new confidence sets (CSs) for the regression discontinuity parameter in fuzzy designs. Our CSs are based on local linear regression, and are bias-aware, in the sense that they take possible bias explicitly into account. Their construction shares similarities with that of Anderson-Rubin CSs in exactly identified instrumental variable models, and thereby avoids issues with "delta method" approximations that underlie most commonly used existing inference methods for fuzzy regression discontinuity analysis. Our CSs are asymptotically equivalent to existing procedures in canonical settings with strong identification and a continuous running variable. However, due to their particular construction they are also valid under a wide range of empirically relevant conditions in which existing methods can fail, such as setups with discrete running variables, donut designs, and weak identification.

相關內容

 層疊樣式表(Cascading Style Sheet)是一種用來為結構化文檔(如 HTML 文檔或 XML 應用)添加樣式(字體、間距和顏色等)的計算機語言。

We consider the problem of estimating the parameters of a Markov Random Field with hard-constraints using a single sample. As our main running examples, we use the $k$-SAT and the proper coloring models, as well as general $H$-coloring models; for all of these we obtain both positive and negative results. In contrast to the soft-constrained case, we show in particular that single-sample estimation is not always possible, and that the existence of an estimator is related to the existence of non-satisfiable instances. Our algorithms are based on the pseudo-likelihood estimator. We show variance bounds for this estimator using coupling techniques inspired, in the case of $k$-SAT, by Moitra's sampling algorithm (JACM, 2019); our positive results for colorings build on this new coupling approach. For $q$-colorings on graphs with maximum degree $d$, we give a linear-time estimator when $q>d+1$, whereas the problem is non-identifiable when $q\leq d+1$. For general $H$-colorings, we show that standard conditions that guarantee sampling, such as Dobrushin's condition, are insufficient for one-sample learning; on the positive side, we provide a general condition that is sufficient to guarantee linear-time learning and obtain applications for proper colorings and permissive models. For the $k$-SAT model on formulas with maximum degree $d$, we provide a linear-time estimator when $k\gtrsim 6.45\log d$, whereas the problem becomes non-identifiable when $k\lesssim \log d$.

Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data. Recent works have begun to consider the effects of using pre-trained models as an initialization point for existing FL algorithms; however, these approaches ignore the vast body of efficient transfer learning literature from the centralized learning setting. Here we revisit the problem of FL from a pre-trained model considered in prior work and expand it to a set of computer vision transfer learning problems. We first observe that simply fitting a linear classification head can be efficient and effective in many cases. We then show that in the FL setting, fitting a classifier using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals, while obtaining strong performance. Finally, we demonstrate that using a two-phase approach of obtaining the classifier and then fine-tuning the model can yield rapid convergence and improved generalization in the federated setting. We demonstrate the potential our method has to reduce communication and compute costs while achieving better model performance.

Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.

Today, conversational systems are expected to handle conversations in multi-party settings, especially within Socially Assistive Robots (SARs). However, practical usability remains difficult as there are additional challenges to overcome, such as speaker recognition, addressee recognition, and complex turn-taking. In this paper, we present our work on a multi-party conversational system, which invites two users to play a trivia quiz game. The system detects users' agreement or disagreement on a final answer and responds accordingly. Our evaluation includes both performance and user assessment results, with a focus on detecting user agreement. Our annotated transcripts and the code for the proposed system have been released open-source on GitHub.

Matching has been widely used to mimic a randomized experiment with observational data. Ideally, treated subjects are exactly matched with controls for the covariates, and randomization-based estimation can then be conducted as in a randomized experiment (assuming no unobserved covariates). However, when there exists continuous covariates or many covariates, matching typically should be inexact. Previous studies have routinely ignored inexact matching in the downstream randomization-based estimation as long as some covariate balance criteria are satisfied, which can cause severe estimation bias. Built on the covariate-adaptive randomization inference framework, in this research note, we propose two new classes of bias-corrected randomization-based estimators to reduce estimation bias due to inexact matching: the bias-corrected maximum $p$-value estimator for the constant treatment effect and the bias-corrected difference-in-means estimator for the average treatment effect. Our simulation results show that the proposed bias-corrected estimators can effectively reduce estimation bias due to inexact matching.

Much progress has been made in reconstructing garments from an image or a video. However, none of existing works meet the expectations of digitizing high-quality animatable dynamic garments that can be adjusted to various unseen poses. In this paper, we propose the first method to recover high-quality animatable dynamic garments from monocular videos without depending on scanned data. To generate reasonable deformations for various unseen poses, we propose a learnable garment deformation network that formulates the garment reconstruction task as a pose-driven deformation problem. To alleviate the ambiguity estimating 3D garments from monocular videos, we design a multi-hypothesis deformation module that learns spatial representations of multiple plausible deformations. Experimental results on several public datasets demonstrate that our method can reconstruct high-quality dynamic garments with coherent surface details, which can be easily animated under unseen poses. The code will be provided for research purposes.

Large Language Models (LLMs) are trained on corpora disproportionally weighted in favor of Standard American English. As a result, speakers of other dialects experience significantly more failures when interacting with these technologies. In practice, these speakers often accommodate their speech to be better understood. Our work shares the belief that language technologies should be designed to accommodate the diversity in English dialects and not the other way around. However, prior works on dialect struggle with generalizing to evolving and emerging dialects in a scalable manner. To fill this gap, our method, HyperLoRA, leverages expert linguistic knowledge to enable resource-efficient adaptation via hypernetworks. By disentangling dialect-specific and cross-dialectal information, HyperLoRA improves generalization to unseen dialects in a task-agnostic fashion. Not only is HyperLoRA more scalable in the number of parameters, but it also achieves the best or most competitive performance across 5 dialects in a zero-shot setting. In this way, our approach facilitates access to language technology for billions of English dialect speakers who are traditionally underrepresented.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司