亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Car-following behavior modeling is critical for understanding traffic flow dynamics and developing high-fidelity microscopic simulation models. Most existing impulse-response car-following models prioritize computational efficiency and interpretability by using a parsimonious nonlinear function based on immediate preceding state observations. However, this approach disregards historical information, limiting its ability to explain real-world driving data. Consequently, serially correlated residuals are commonly observed when calibrating these models with actual trajectory data, hindering their ability to capture complex and stochastic phenomena. To address this limitation, we propose a dynamic regression framework incorporating time series models, such as autoregressive processes, to capture error dynamics. This statistically rigorous calibration outperforms the simple assumption of independent errors and enables more accurate simulation and prediction by leveraging higher-order historical information. We validate the effectiveness of our framework using HighD and OpenACC data, demonstrating improved probabilistic simulations. In summary, our framework preserves the parsimonious nature of traditional car-following models while offering enhanced probabilistic simulations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 有向 · Performer · 線性的 · 值域 ·
2023 年 8 月 30 日

The beam-oriented digital predistortion (BO-DPD) is not sufficient to linearize the output from a subarray of power amplifiers (PAs) in different directions except the desired direction. Therefore, subsequent to the BO-DPD operation, we perform a post-weighting (PW) processing to minimize the nonlinear radiations in the wide range of directions under crosstalk. Here, the optimized PW coefficients are multiplied by the polynomial terms of the BO-DPD, then, the resultant signals are distributed to the PAs to compensate the nonlinear radiations. In this work, first, we propose fully-featured post-weighting (FF-PW) scheme, then, we derive a low-complexity post-weighting (LC-PW) scheme.

Pose-free neural radiance fields (NeRF) aim to train NeRF with unposed multi-view images and it has achieved very impressive success in recent years. Most existing works share the pipeline of training a coarse pose estimator with rendered images at first, followed by a joint optimization of estimated poses and neural radiance field. However, as the pose estimator is trained with only rendered images, the pose estimation is usually biased or inaccurate for real images due to the domain gap between real images and rendered images, leading to poor robustness for the pose estimation of real images and further local minima in joint optimization. We design IR-NeRF, an innovative pose-free NeRF that introduces implicit pose regularization to refine pose estimator with unposed real images and improve the robustness of the pose estimation for real images. With a collection of 2D images of a specific scene, IR-NeRF constructs a scene codebook that stores scene features and captures the scene-specific pose distribution implicitly as priors. Thus, the robustness of pose estimation can be promoted with the scene priors according to the rationale that a 2D real image can be well reconstructed from the scene codebook only when its estimated pose lies within the pose distribution. Extensive experiments show that IR-NeRF achieves superior novel view synthesis and outperforms the state-of-the-art consistently across multiple synthetic and real datasets.

Neural ranking methods based on large transformer models have recently gained significant attention in the information retrieval community, and have been adopted by major commercial solutions. Nevertheless, they are computationally expensive to create, and require a great deal of labeled data for specialized corpora. In this paper, we explore a low resource alternative which is a bag-of-embedding model for document retrieval and find that it is competitive with large transformer models fine tuned on information retrieval tasks. Our results show that a simple combination of TF-IDF, a traditional keyword matching method, with a shallow embedding model provides a low cost path to compete well with the performance of complex neural ranking models on 3 datasets. Furthermore, adding TF-IDF measures improves the performance of large-scale fine tuned models on these tasks.

Wireless fingerprinting refers to a device identification method leveraging hardware imperfections and wireless channel variations as signatures. Beyond physical layer characteristics, recent studies demonstrated that user behaviors could be identified through network traffic, e.g., packet length, without decryption of the payload. Inspired by these results, we propose a multi-layer fingerprinting framework that jointly considers the multi-layer signatures for improved identification performance. In contrast to previous works, by leveraging the recent multi-view machine learning paradigm, i.e., data with multiple forms, our method can cluster the device information shared among the multi-layer features without supervision. Our information-theoretic approach can be extended to supervised and semi-supervised settings with straightforward derivations. In solving the formulated problem, we obtain a tight surrogate bound using variational inference for efficient optimization. In extracting the shared device information, we develop an algorithm based on the Wyner common information method, enjoying reduced computation complexity as compared to existing approaches. The algorithm can be applied to data distributions belonging to the exponential family class. Empirically, we evaluate the algorithm in a synthetic dataset with real-world video traffic and simulated physical layer characteristics. Our empirical results show that the proposed method outperforms the state-of-the-art baselines in both supervised and unsupervised settings.

Bayesian optimization (BO) has contributed greatly to improving model performance by suggesting promising hyperparameter configurations iteratively based on observations from multiple training trials. However, only partial knowledge (i.e., the measured performances of trained models and their hyperparameter configurations) from previous trials is transferred. On the other hand, Self-Distillation (SD) only transfers partial knowledge learned by the task model itself. To fully leverage the various knowledge gained from all training trials, we propose the BOSS framework, which combines BO and SD. BOSS suggests promising hyperparameter configurations through BO and carefully selects pre-trained models from previous trials for SD, which are otherwise abandoned in the conventional BO process. BOSS achieves significantly better performance than both BO and SD in a wide range of tasks including general image classification, learning with noisy labels, semi-supervised learning, and medical image analysis tasks.

Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at //github.com/Fanning-Zhang/SATNet.

With the increasing popularity and accessibility of high dynamic range (HDR) photography, tone mapping operators (TMOs) for dynamic range compression are practically demanding. In this paper, we develop a two-stage neural network-based TMO that is self-calibrated and perceptually optimized. In Stage one, motivated by the physiology of the early stages of the human visual system, we first decompose an HDR image into a normalized Laplacian pyramid. We then use two lightweight deep neural networks (DNNs), taking the normalized representation as input and estimating the Laplacian pyramid of the corresponding LDR image. We optimize the tone mapping network by minimizing the normalized Laplacian pyramid distance (NLPD), a perceptual metric aligning with human judgments of tone-mapped image quality. In Stage two, the input HDR image is self-calibrated to compute the final LDR image. We feed the same HDR image but rescaled with different maximum luminances to the learned tone mapping network, and generate a pseudo-multi-exposure image stack with different detail visibility and color saturation. We then train another lightweight DNN to fuse the LDR image stack into a desired LDR image by maximizing a variant of the structural similarity index for multi-exposure image fusion (MEF-SSIM), which has been proven perceptually relevant to fused image quality. The proposed self-calibration mechanism through MEF enables our TMO to accept uncalibrated HDR images, while being physiology-driven. Extensive experiments show that our method produces images with consistently better visual quality. Additionally, since our method builds upon three lightweight DNNs, it is among the fastest local TMOs.

Many data extraction tasks of practical relevance require not only syntactic pattern matching but also semantic reasoning about the content of the underlying text. While regular expressions are very well suited for tasks that require only syntactic pattern matching, they fall short for data extraction tasks that involve both a syntactic and semantic component. To address this issue, we introduce semantic regexes, a generalization of regular expressions that facilitates combined syntactic and semantic reasoning about textual data. We also propose a novel learning algorithm that can synthesize semantic regexes from a small number of positive and negative examples. Our proposed learning algorithm uses a combination of neural sketch generation and compositional type-directed synthesis for fast and effective generalization from a small number of examples. We have implemented these ideas in a new tool called Smore and evaluated it on representative data extraction tasks involving several textual datasets. Our evaluation shows that semantic regexes can better support complex data extraction tasks than standard regular expressions and that our learning algorithm significantly outperforms existing tools, including state-of-the-art neural networks and program synthesis tools.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

北京阿比特科技有限公司