亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Advanced Persistent Threat (APT) attacks are highly sophisticated and employ a multitude of advanced methods and techniques to target organizations and steal sensitive and confidential information. APT attacks consist of multiple stages and have a defined strategy, utilizing new and innovative techniques and technologies developed by hackers to evade security software monitoring. To effectively protect against APTs, detecting and predicting APT indicators with an explanation from Machine Learning (ML) prediction is crucial to reveal the characteristics of attackers lurking in the network system. Meanwhile, Federated Learning (FL) has emerged as a promising approach for building intelligent applications without compromising privacy. This is particularly important in cybersecurity, where sensitive data and high-quality labeling play a critical role in constructing effective machine learning models for detecting cyber threats. Therefore, this work proposes XFedHunter, an explainable federated learning framework for APT detection in Software-Defined Networking (SDN) leveraging local cyber threat knowledge from many training collaborators. In XFedHunter, Graph Neural Network (GNN) and Deep Learning model are utilized to reveal the malicious events effectively in the large number of normal ones in the network system. The experimental results on NF-ToN-IoT and DARPA TCE3 datasets indicate that our framework can enhance the trust and accountability of ML-based systems utilized for cybersecurity purposes without privacy leakage.

相關內容

Gaze tracking devices have the potential to greatly expand interactivity, yet miscalibration remains a significant barrier to use. As devices miscalibrate, people tend to compensate by intentionally offsetting their gaze, which makes detecting miscalibration from eye signals difficult. To help address this problem, we propose a novel approach to seamless calibration based on the insight that the system's model of eye gaze can be updated during reading (user does not compensate) to improve calibration for typing (user might compensate). To explore this approach, we built an auto-calibrating gaze typing prototype called EyeO, ran a user study with 20 participants, and conducted a semi-structured interview with 6 ALS community stakeholders. Our user study results suggest that seamless autocalibration can significantly improve typing efficiency and user experience. Findings from the semi-structured interview validate the need for autocalibration, and shed light on the prototype's potential usefulness, desired algorithmic and design improvements for users.

Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As known, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity, and complexity of scenes) of LiDAR point clouds, and represents the keypoint with its robust neighbor keypoints, which provide strong distinction in the description of the keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-art in matching performance. More importantly, LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to various 3D vision applications. In this paper, we apply the proposed LinK3D to the LiDAR odometry and place recognition task of LiDAR SLAM. The experimental results show that our method can improve the efficiency and accuracy of LiDAR SLAM system.

Large Language Models (LLMs) have transformed the landscape of artificial intelligence, while their enormous size presents significant challenges in terms of computational costs. We introduce LoRAShear, a novel efficient approach to structurally prune LLMs and recover knowledge. Given general LLMs, LoRAShear at first creates the dependency graphs over LoRA modules to discover minimally removal structures and analyze the knowledge distribution. It then proceeds progressive structured pruning on LoRA adaptors and enables inherent knowledge transfer to better preserve the information in the redundant structures. To recover the lost knowledge during pruning, LoRAShear meticulously studies and proposes a dynamic fine-tuning schemes with dynamic data adaptors to effectively narrow down the performance gap to the full models. Numerical results demonstrate that by only using one GPU within a couple of GPU days, LoRAShear effectively reduced footprint of LLMs by 20% with only 1.0% performance degradation and significantly outperforms state-of-the-arts. The source code will be available at //github.com/microsoft/lorashear.

This paper introduces SAMAug, a novel visual point augmentation method for the Segment Anything Model (SAM) that enhances interactive image segmentation performance. SAMAug generates augmented point prompts to provide more information about the user's intention to SAM. Starting with an initial point prompt, SAM produces an initial mask, which is then fed into our proposed SAMAug to generate augmented point prompts. By incorporating these extra points, SAM can generate augmented segmentation masks based on both the augmented point prompts and the initial prompt, resulting in improved segmentation performance. We conducted evaluations using four different point augmentation strategies: random sampling, sampling based on maximum difference entropy, maximum distance, and saliency. Experiment results on the COCO, Fundus, COVID QUEx, and ISIC2018 datasets show that SAMAug can boost SAM's segmentation results, especially using the maximum distance and saliency. SAMAug demonstrates the potential of visual prompt augmentation for computer vision. Codes of SAMAug are available at github.com/yhydhx/SAMAug

We present The Vault, a dataset of high-quality code-text pairs in multiple programming languages for training large language models to understand and generate code. We present methods for thoroughly extracting samples that use both rule-based and deep learning-based methods to ensure that they contain high-quality pairs of code and text, resulting in a dataset of 43 million high-quality code-text pairs. Our extensive evaluations on common coding tasks including code generation, code search and code summarization show that when fine-tuning Code Large Language Models on The Vault, such models outperform the same models trained on other datasets such as CodeSearchNet. We also provide detailed analyses of our datasets to assess the effects of various programming languages and docstrings on the performance of such models.

Backdoor attacks have emerged as a prominent threat to natural language processing (NLP) models, where the presence of specific triggers in the input can lead poisoned models to misclassify these inputs to predetermined target classes. Current detection mechanisms are limited by their inability to address more covert backdoor strategies, such as style-based attacks. In this work, we propose an innovative test-time poisoned sample detection framework that hinges on the interpretability of model predictions, grounded in the semantic meaning of inputs. We contend that triggers (e.g., infrequent words) are not supposed to fundamentally alter the underlying semantic meanings of poisoned samples as they want to stay stealthy. Based on this observation, we hypothesize that while the model's predictions for paraphrased clean samples should remain stable, predictions for poisoned samples should revert to their true labels upon the mutations applied to triggers during the paraphrasing process. We employ ChatGPT, a state-of-the-art large language model, as our paraphraser and formulate the trigger-removal task as a prompt engineering problem. We adopt fuzzing, a technique commonly used for unearthing software vulnerabilities, to discover optimal paraphrase prompts that can effectively eliminate triggers while concurrently maintaining input semantics. Experiments on 4 types of backdoor attacks, including the subtle style backdoors, and 4 distinct datasets demonstrate that our approach surpasses baseline methods, including STRIP, RAP, and ONION, in precision and recall.

Mixed Reality (MR) is gaining prominence in manual task skill learning due to its in-situ, embodied, and immersive experience. To teach manual tasks, current methodologies break the task into hierarchies (tasks into subtasks) and visualize the current subtask and future in terms of causality. Existing psychology literature also shows that humans learn tasks by breaking them into hierarchies. In order to understand the design space of information visualized to the learner for better task understanding, we conducted a user study with 48 users. The study was conducted using a complex assembly task, which involves learning of both actions and tool usage. We aim to explore the effect of visualization of causality in the hierarchy for manual task learning in MR by four options: no causality, event level causality, interaction level causality, and gesture level causality. The results show that the user understands and performs best when all the level of causality is shown to the user. Based on the results, we further provide design recommendations and in-depth discussions for future manual task learning systems.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司