亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Chinese Spelling Correction (CSC) is gaining increasing attention due to its promise of automatically detecting and correcting spelling errors in Chinese texts. Despite its extensive use in many applications, like search engines and optical character recognition systems, little has been explored in medical scenarios in which complex and uncommon medical entities are easily misspelled. Correcting the misspellings of medical entities is arguably more difficult than those in the open domain due to its requirements of specificdomain knowledge. In this work, we define the task of Medical-domain Chinese Spelling Correction and propose MCSCSet, a large scale specialist-annotated dataset that contains about 200k samples. In contrast to the existing open-domain CSC datasets, MCSCSet involves: i) extensive real-world medical queries collected from Tencent Yidian, ii) corresponding misspelled sentences manually annotated by medical specialists. To ensure automated dataset curation, MCSCSet further offers a medical confusion set consisting of the commonly misspelled characters of given Chinese medical terms. This enables one to create the medical misspelling dataset automatically. Extensive empirical studies have shown significant performance gaps between the open-domain and medical-domain spelling correction, highlighting the need to develop high-quality datasets that allow for Chinese spelling correction in specific domains. Moreover, our work benchmarks several representative Chinese spelling correction models, establishing baselines for future work.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

There has been a massive explosion of data generated by customers and retained by companies in the last decade. However, there is a significant mismatch between the increasing volume of data and the lack of automation methods and tools. The lack of best practices in data science programming may lead to software quality degradation, release schedule slippage, and budget overruns. To mitigate these concerns, we would like to bring software engineering best practices into data science. Specifically, we focus on automated data validation in the data preparation phase of the software development life cycle. This paper studies a real-world industrial case and applies software engineering best practices to develop an automated test harness called RESTORE. We release RESTORE as an open-source R package. Our experience report, done on the geodemographic data, shows that RESTORE enables efficient and effective detection of errors injected during the data preparation phase. RESTORE also significantly reduced the cost of testing. We hope that the community benefits from the open-source project and the practical advice based on our experience.

Derived from spiking neuron models via the diffusion approximation, the moment activation (MA) faithfully captures the nonlinear coupling of correlated neural variability. However, numerical evaluation of the MA faces significant challenges due to a number of ill-conditioned Dawson-like functions. By deriving asymptotic expansions of these functions, we develop an efficient numerical algorithm for evaluating the MA and its derivatives ensuring reliability, speed, and accuracy. We also provide exact analytical expressions for the MA in the weak fluctuation limit. Powered by this efficient algorithm, the MA may serve as an effective tool for investigating the dynamics of correlated neural variability in large-scale spiking neural circuits.

Climate change is threatening human health in unprecedented orders and many ways. These threats are expected to grow unless effective and evidence-based policies are developed and acted upon to minimize or eliminate them. Attaining such a task requires the highest degree of the flow of knowledge from science into policy. The multidisciplinary, location-specific, and vastness of published science makes it challenging to keep track of novel work in this area, as well as making the traditional knowledge synthesis methods inefficient in infusing science into policy. To this end, we consider developing multiple domain-specific language models (LMs) with different variations from Climate- and Health-related information, which can serve as a foundational step toward capturing available knowledge to enable solving different tasks, such as detecting similarities between climate- and health-related concepts, fact-checking, relation extraction, evidence of health effects to policy text generation, and more. To our knowledge, this is the first work that proposes developing multiple domain-specific language models for the considered domains. We will make the developed models, resources, and codebase available for the researchers.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

北京阿比特科技有限公司