亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the partial search order problem (PSOP) proposed recently by Scheffler [WG 2022]. Given a graph $G$ together with a partial order over the vertices of $G$, this problem determines if there is an $\mathcal{S}$-ordering that is consistent with the given partial order, where $\mathcal{S}$ is a graph search paradigm like BFS, DFS, etc. This problem naturally generalizes the end-vertex problem which has received much attention over the past few years. It also generalizes the so-called ${\mathcal{F}}$-tree recognition problem which has just been studied in the literature recently. Our main contribution is a polynomial-time dynamic programming algorithm for the PSOP on chordal graphs with respect to the maximum cardinality search (MCS). This resolves one of the most intriguing open questions left in the work of Sheffler [WG 2022]. To obtain our result, we propose the notion of layer structure and study numerous related structural properties which might be of independent interest.

相關內容

This paper is concerned with games of infinite duration played over potentially infinite graphs. Recently, Ohlmann (LICS 2022) presented a characterisation of objectives admitting optimal positional strategies, by means of universal graphs: an objective is positional if and only if it admits well-ordered monotone universal graphs. We extend Ohlmann's characterisation to encompass (finite or infinite) memory upper bounds. We prove that objectives admitting optimal strategies with $\varepsilon$-memory less than $m$ (a memory that cannot be updated when reading an $\varepsilon$-edge) are exactly those which admit well-founded monotone universal graphs whose antichains have size bounded by $m$. We also give a characterisation of chromatic memory by means of appropriate universal structures. Our results apply to finite as well as infinite memory bounds (for instance, to objectives with finite but unbounded memory, or with countable memory strategies). We illustrate the applicability of our framework by carrying out a few case studies, we provide examples witnessing limitations of our approach, and we discuss general closure properties which follow from our results.

We study the problem of ordered stabbing of $n$ balls (of arbitrary and possibly different radii, no ball contained in another) in $\mathbb{R}^d$, $d \geq 3$, with either a directed line segment or a (directed) polygonal curve. Here, the line segment, respectively polygonal curve, shall visit (intersect) the given sequence of balls in the order of the sequence. We present a deterministic algorithm that decides whether there exists a line segment stabbing the given sequence of balls in order, in time $O(n^{4d-2} \log n)$. Due to the descriptional complexity of the region containing these line segments, we can not extend this algorithm to actually compute one. We circumvent this hurdle by devising a randomized algorithm for a relaxed variant of the ordered line segment stabbing problem, which is built upon the central insights from the aforementioned decision algorithm. We further show that this algorithm can be plugged into an algorithmic scheme by Guibas et al., yielding an algorithm for a relaxed variant of the minimum-link ordered stabbing path problem that achieves approximation factor 2 with respect to the number of links. We conclude with experimental evaluations of the latter two algorithms, showing practical applicability.

Machine learning systems have been extensively used as auxiliary tools in domains that require critical decision-making, such as healthcare and criminal justice. The explainability of decisions is crucial for users to develop trust on these systems. In recent years, the globally-consistent rule-based summary-explanation and its max-support (MS) problem have been proposed, which can provide explanations for particular decisions along with useful statistics of the dataset. However, globally-consistent summary-explanations with limited complexity typically have small supports, if there are any. In this paper, we propose a relaxed version of summary-explanation, i.e., the $q$-consistent summary-explanation, which aims to achieve greater support at the cost of slightly lower consistency. The challenge is that the max-support problem of $q$-consistent summary-explanation (MSqC) is much more complex than the original MS problem, resulting in over-extended solution time using standard branch-and-bound solvers. To improve the solution time efficiency, this paper proposes the weighted column sampling~(WCS) method based on solving smaller problems by sampling variables according to their simplified increase support (SIS) values. Experiments verify that solving MSqC with the proposed SIS-based WCS method is not only more scalable in efficiency, but also yields solutions with greater support and better global extrapolation effectiveness.

Studies show dramatic increase in elderly population of Western Europe over the next few decades, which will put pressure on healthcare systems. Measures must be taken to meet these social challenges. Healthcare robots investigated to facilitate independent living for elderly. This paper aims to review recent projects in robotics for healthcare from 2008 to 2021. We provide an overview of the focus in this area and a roadmap for upcoming research. Our study was initiated with a literature search using three digital databases. Searches were performed for articles, including research projects containing the words elderly care, assisted aging, health monitoring, or elderly health, and any word including the root word robot. The resulting 20 recent research projects are described and categorized in this paper. Then, these projects were analyzed using thematic analysis. Our findings can be summarized in common themes: most projects have a strong focus on care robots functionalities; robots are often seen as products in care settings; there is an emphasis on robots as commercial products; and there is some limited focus on the design and ethical aspects of care robots. The paper concludes with five key points representing a roadmap for future research addressing robotic for elderly people.

Motivated by the increasing need for fast processing of large-scale graphs, we study a number of fundamental graph problems in a message-passing model for distributed computing, called $k$-machine model, where we have $k$ machines that jointly perform computations on $n$-node graphs. The graph is assumed to be partitioned in a balanced fashion among the $k$ machines, a common implementation in many real-world systems. Communication is point-to-point via bandwidth-constrained links, and the goal is to minimize the round complexity, i.e., the number of communication rounds required to finish a computation. We present a generic methodology that allows to obtain efficient algorithms in the $k$-machine model using distributed algorithms for the classical CONGEST model of distributed computing. Using this methodology, we obtain algorithms for various fundamental graph problems such as connectivity, minimum spanning trees, shortest paths, maximal independent sets, and finding subgraphs, showing that many of these problems can be solved in $\tilde{O}(n/k)$ rounds; this shows that one can achieve speedup nearly linear in $k$. To complement our upper bounds, we present lower bounds on the round complexity that quantify the fundamental limitations of solving graph problems distributively. We first show a lower bound of $\Omega(n/k)$ rounds for computing a spanning tree of the input graph. This result implies the same bound for other fundamental problems such as computing a minimum spanning tree, breadth-first tree, or shortest paths tree. We also show a $\tilde \Omega(n/k^2)$ lower bound for connectivity, spanning tree verification and other related problems. The latter lower bounds follow from the development and application of novel results in a random-partition variant of the classical communication complexity model.

We consider the Sobolev embedding operator $E_s : H^s(\Omega) \to L_2(\Omega)$ and its role in the solution of inverse problems. In particular, we collect various properties and investigate different characterizations of its adjoint operator $E_s^*$, which is a common component in both iterative and variational regularization methods. These include variational representations and connections to boundary value problems, Fourier and wavelet representations, as well as connections to spatial filters. Moreover, we consider characterizations in terms of Fourier series, singular value decompositions and frame decompositions, as well as representations in finite dimensional settings. While many of these results are already known to researchers from different fields, a detailed and general overview or reference work containing rigorous mathematical proofs is still missing. Hence, in this paper we aim to fill this gap by collecting, introducing and generalizing a large number of characterizations of $E_s^*$ and discuss their use in regularization methods for solving inverse problems. The resulting compilation can serve both as a reference as well as a useful guide for its efficient numerical implementation in practice.

Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges). Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

北京阿比特科技有限公司