亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The attention module, which is a crucial component in Transformer, cannot scale efficiently to long sequences due to its quadratic complexity. Many works focus on approximating the dot-then-exponentiate softmax function in the original attention, leading to sub-quadratic or even linear-complexity Transformer architectures. However, we show that these methods cannot be applied to more powerful attention modules that go beyond the dot-then-exponentiate style, e.g., Transformers with relative positional encoding (RPE). Since in many state-of-the-art models, relative positional encoding is used as default, designing efficient Transformers that can incorporate RPE is appealing. In this paper, we propose a novel way to accelerate attention calculation for Transformers with RPE on top of the kernelized attention. Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT). With FFT, our method achieves $\mathcal{O}(n\log n)$ time complexity. Interestingly, we further demonstrate that properly using relative positional encoding can mitigate the training instability problem of vanilla kernelized attention. On a wide range of tasks, we empirically show that our models can be trained from scratch without any optimization issues. The learned model performs better than many efficient Transformer variants and is faster than standard Transformer in the long-sequence regime.

相關內容

Pre-trained language models (LMs) often struggle to reason logically or generalize in a compositional fashion. Recent work suggests that incorporating external entity knowledge can improve LMs' abilities to reason and generalize. However, the effect of explicitly providing entity abstraction remains unclear, especially with recent studies suggesting that pre-trained LMs already encode some of that knowledge in their parameters. We study the utility of incorporating entity type abstractions into pre-trained Transformers and test these methods on four NLP tasks requiring different forms of logical reasoning: (1) compositional language understanding with text-based relational reasoning (CLUTRR), (2) abductive reasoning (ProofWriter), (3) multi-hop question answering (HotpotQA), and (4) conversational question answering (CoQA). We propose and empirically explore three ways to add such abstraction: (i) as additional input embeddings, (ii) as a separate sequence to encode, and (iii) as an auxiliary prediction task for the model. Overall, our analysis demonstrates that models with abstract entity knowledge performs better than without it. However, our experiments also show that the benefits strongly depend on the technique used and the task at hand. The best abstraction aware models achieved an overall accuracy of 88.8% and 91.8% compared to the baseline model achieving 62.3% and 89.8% on CLUTRR and ProofWriter respectively. In addition, abstraction-aware models showed improved compositional generalization in both interpolation and extrapolation settings. However, for HotpotQA and CoQA, we find that F1 scores improve by only 0.5% on average. Our results suggest that the benefit of explicit abstraction is significant in formally defined logical reasoning settings requiring many reasoning hops, but point to the notion that it is less beneficial for NLP tasks having less formal logical structure.

Stochastic majorization-minimization (SMM) is an online extension of the classical principle of majorization-minimization, which consists of sampling i.i.d. data points from a fixed data distribution and minimizing a recursively defined majorizing surrogate of an objective function. In this paper, we introduce stochastic block majorization-minimization, where the surrogates can now be only block multi-convex and a single block is optimized at a time within a diminishing radius. Relaxing the standard strong convexity requirements for surrogates in SMM, our framework gives wider applicability including online CANDECOMP/PARAFAC (CP) dictionary learning and yields greater computational efficiency especially when the problem dimension is large. We provide an extensive convergence analysis on the proposed algorithm, which we derive under possibly dependent data streams, relaxing the standard i.i.d. assumption on data samples. We show that the proposed algorithm converges almost surely to the set of stationary points of a nonconvex objective under constraints at a rate $O((\log n)^{1+\eps}/n^{1/2})$ for the empirical loss function and $O((\log n)^{1+\eps}/n^{1/4})$ for the expected loss function, where $n$ denotes the number of data samples processed. Under some additional assumption, the latter convergence rate can be improved to $O((\log n)^{1+\eps}/n^{1/2})$. Our results provide first convergence rate bounds for various online matrix and tensor decomposition algorithms under a general Markovian data setting.

We study the forecasting problem for traffic with dynamic, possibly periodical, and joint spatial-temporal dependency between regions. Given the aggregated inflow and outflow traffic of regions in a city from time slots 0 to t-1, we predict the traffic at time t at any region. Prior arts in the area often consider the spatial and temporal dependencies in a decoupled manner or are rather computationally intensive in training with a large number of hyper-parameters to tune. We propose ST-TIS, a novel, lightweight, and accurate Spatial-Temporal Transformer with information fusion and region sampling for traffic forecasting. ST-TIS extends the canonical Transformer with information fusion and region sampling. The information fusion module captures the complex spatial-temporal dependency between regions. The region sampling module is to improve the efficiency and prediction accuracy, cutting the computation complexity for dependency learning from $O(n^2)$ to $O(n\sqrt{n})$, where n is the number of regions. With far fewer parameters than state-of-the-art models, the offline training of our model is significantly faster in terms of tuning and computation (with a reduction of up to $90\%$ on training time and network parameters). Notwithstanding such training efficiency, extensive experiments show that ST-TIS is substantially more accurate in online prediction than state-of-the-art approaches (with an average improvement of up to $9.5\%$ on RMSE, and $12.4\%$ on MAPE).

We present and analyze a momentum-based gradient method for training linear classifiers with an exponentially-tailed loss (e.g., the exponential or logistic loss), which maximizes the classification margin on separable data at a rate of $\widetilde{\mathcal{O}}(1/t^2)$. This contrasts with a rate of $\mathcal{O}(1/\log(t))$ for standard gradient descent, and $\mathcal{O}(1/t)$ for normalized gradient descent. This momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual, which manages to result in a simple and intuitive method in the primal. This dual view can also be used to derive a stochastic variant, which performs adaptive non-uniform sampling via the dual variables.

Recent advances in Transformer models allow for unprecedented sequence lengths, due to linear space and time complexity. In the meantime, relative positional encoding (RPE) was proposed as beneficial for classical Transformers and consists in exploiting lags instead of absolute positions for inference. Still, RPE is not available for the recent linear-variants of the Transformer, because it requires the explicit computation of the attention matrix, which is precisely what is avoided by such methods. In this paper, we bridge this gap and present Stochastic Positional Encoding as a way to generate PE that can be used as a replacement to the classical additive (sinusoidal) PE and provably behaves like RPE. The main theoretical contribution is to make a connection between positional encoding and cross-covariance structures of correlated Gaussian processes. We illustrate the performance of our approach on the Long-Range Arena benchmark and on music generation.

We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.

How to explicitly encode positional information into neural networks is important in learning the representation of natural languages, such as BERT. Based on the Transformer architecture, the positional information is simply encoded as embedding vectors, which are used in the input layer, or encoded as a bias term in the self-attention module. In this work, we investigate the problems in the previous formulations and propose a new positional encoding method for BERT called Transformer with Untied Positional Encoding (TUPE). Different from all other works, TUPE only uses the word embedding as input. In the self-attention module, the word contextual correlation and positional correlation are computed separately with different parameterizations and then added together. This design removes the addition over heterogeneous embeddings in the input, which may potentially bring randomness, and gives more expressiveness to characterize the relationship between words/positions by using different projection matrices. Furthermore, TUPE unties the [CLS] symbol from other positions to provide it with a more specific role to capture the global representation of the sentence. Extensive experiments and ablation studies on GLUE benchmark demonstrate the effectiveness and efficiency of the proposed method: TUPE outperforms several baselines on almost all tasks by a large margin. In particular, it can achieve a higher score than baselines while only using 30% pre-training computational costs. We release our code at //github.com/guolinke/TUPE.

We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine translation. In contrast to recurrent and convolutional neural networks, it does not explicitly model relative or absolute position information in its structure. Instead, it requires adding representations of absolute positions to its inputs. In this work we present an alternative approach, extending the self-attention mechanism to efficiently consider representations of the relative positions, or distances between sequence elements. On the WMT 2014 English-to-German and English-to-French translation tasks, this approach yields improvements of 1.3 BLEU and 0.3 BLEU over absolute position representations, respectively. Notably, we observe that combining relative and absolute position representations yields no further improvement in translation quality. We describe an efficient implementation of our method and cast it as an instance of relation-aware self-attention mechanisms that can generalize to arbitrary graph-labeled inputs.

北京阿比特科技有限公司