亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server. One significant challenge is that the distributed data is not independently and identically distributed (non-IID), typically including both intra-domain and inter-domain heterogeneity. However, recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges. Given these limitations, this paper clarifies these two non-IID challenges and attempts to introduce cluster representation to address them from both local and global perspectives. Specifically, we propose a dual-clustered feature contrast-based FL framework with dual focuses. First, we employ clustering on the local representations of each client, aiming to capture intra-class information based on these local clusters at a high level of granularity. Then, we facilitate cross-client knowledge sharing by pulling the local representation closer to clusters shared by clients with similar semantics while pushing them away from clusters with dissimilar semantics. Second, since the sizes of local clusters belonging to the same class may differ for each client, we further utilize clustering on the global side and conduct averaging to create a consistent global signal for guiding each local training in a contrastive manner. Experimental results on multiple datasets demonstrate that our proposal achieves comparable or superior performance gain under intra-domain and inter-domain heterogeneity.

相關內容

We propose a novel layer-wise parameterization for convolutional neural networks (CNNs) that includes built-in robustness guarantees by enforcing a prescribed Lipschitz bound. Each layer in our parameterization is designed to satisfy a linear matrix inequality (LMI), which in turn implies dissipativity with respect to a specific supply rate. Collectively, these layer-wise LMIs ensure Lipschitz boundedness for the input-output mapping of the neural network, yielding a more expressive parameterization than through spectral bounds or orthogonal layers. Our new method LipKernel directly parameterizes dissipative convolution kernels using a 2-D Roesser-type state space model. This means that the convolutional layers are given in standard form after training and can be evaluated without computational overhead. In numerical experiments, we show that the run-time using our method is orders of magnitude faster than state-of-the-art Lipschitz-bounded networks that parameterize convolutions in the Fourier domain, making our approach particularly attractive for improving robustness of learning-based real-time perception or control in robotics, autonomous vehicles, or automation systems. We focus on CNNs, and in contrast to previous works, our approach accommodates a wide variety of layers typically used in CNNs, including 1-D and 2-D convolutional layers, maximum and average pooling layers, as well as strided and dilated convolutions and zero padding. However, our approach naturally extends beyond CNNs as we can incorporate any layer that is incrementally dissipative.

Training language models currently requires pre-determining a fixed compute budget because the typical cosine learning rate schedule depends on the total number of steps. In contrast, the Warmup-Stable-Decay (WSD) schedule uses a constant learning rate to produce a main branch of iterates that can in principle continue indefinitely without a pre-specified compute budget. Then, given any compute budget, one can branch out from the main branch at a proper at any time with a rapidly decaying learning rate to produce a strong model. Empirically, WSD generates a non-traditional loss curve: the loss remains elevated during the stable phase but sharply declines during the decay phase. Towards explaining this phenomenon, we conjecture that pretraining loss exhibits a river valley landscape, which resembles a deep valley with a river at its bottom. Under this assumption, we show that during the stable phase, the iterate undergoes large oscillations due to the high learning rate, yet it progresses swiftly along the river. During the decay phase, the rapidly dropping learning rate minimizes the iterate's oscillations, moving it closer to the river and revealing true optimization progress. Therefore, the sustained high learning rate phase and fast decaying phase are responsible for progress in the river and the mountain directions respectively, and are both critical. Our analysis predicts phenomenons consistent with empirical observations and shows that this landscape can emerge from pretraining on a simple bi-gram dataset. Inspired by the theory, we introduce WSD-S, a variant of WSD that reuses previous checkpoints' decay phases and keeps only one main branch, where we resume from a decayed checkpoint. WSD-S empirically outperforms WSD and Cyclic-Cosine in obtaining multiple language model checkpoints across various compute budgets in a single run for parameters scaling from 0.1B to 1.2B.

The offline-to-online (O2O) paradigm in reinforcement learning (RL) utilizes pre-trained models on offline datasets for subsequent online fine-tuning. However, conventional O2O RL algorithms typically require maintaining and retraining the large offline datasets to mitigate the effects of out-of-distribution (OOD) data, which limits their efficiency in exploiting online samples. To address this challenge, we introduce a new paradigm called SAMG: State-Action-Conditional Offline-to-Online Reinforcement Learning with Offline Model Guidance. In particular, rather than directly training on offline data, SAMG freezes the pre-trained offline critic to provide offline values for each state-action pair to deliver compact offline information. This framework eliminates the need for retraining with offline data by freezing and leveraging these values of the offline model. These are then incorporated with the online target critic using a Bellman equation weighted by a policy state-action-aware coefficient. This coefficient, derived from a conditional variational auto-encoder (C-VAE), aims to capture the reliability of the offline data on a state-action level. SAMG could be easily integrated with existing Q-function based O2O RL algorithms. Theoretical analysis shows good optimality and lower estimation error of SAMG. Empirical evaluations demonstrate that SAMG outperforms four state-of-the-art O2O RL algorithms in the D4RL benchmark.

Bit-flip attacks (BFAs) can manipulate deep neural networks (DNNs). For high-level DNN models running on deep learning (DL) frameworks like PyTorch, extensive BFAs have been used to flip bits in model weights and shown effective. Defenses have also been proposed to guard model weights. However, DNNs are increasingly compiled into DNN executables by DL compilers to leverage hardware primitives. These executables manifest distinct computation paradigms; existing research fails to accurately capture and expose the BFA surfaces on DNN executables. To this end, we launch the first systematic study of BFAs on DNN executables. Prior BFAs are limited to attacking model weights and assume a strong whitebox attacker with full knowledge of victim model weights, which is unrealistic as weights are often confidential. In contrast, we find that BFAs on DNN executables can achieve high effectiveness by exploiting the model structure (usually stored in the executable code), which only requires knowing the (often public) model structure. Importantly, such structure-based BFAs are pervasive, transferable, and more severe in DNN executables. They also slip past existing defenses. To demonstrate the new attack surfaces, we assume a weak and more realistic attacker with no knowledge of victim model weights. We design an automated tool to identify vulnerable bits in victim executables with high confidence (70% vs. baseline 2%). We show on DDR4 DRAM that only 1.4 flips on average are needed to fully downgrade the accuracy of victim models, including quantized ones which could require 23x more flips previously, to random guesses. We comprehensively evaluate 16 DNN executables, covering large-scale models trained on commonly-used datasets compiled by the two most popular DL compilers. Our finding calls for incorporating security mechanisms in future DNN compilation toolchains.

Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at //github.com/yyyujintang/PredFormer .

Machine learning practitioners often face significant challenges in formally integrating their prior knowledge and beliefs into predictive models, limiting the potential for nuanced and context-aware analyses. Moreover, the expertise needed to integrate this prior knowledge into probabilistic modeling typically limits the application of these models to specialists. Our goal is to build a regression model that can process numerical data and make probabilistic predictions at arbitrary locations, guided by natural language text which describes a user's prior knowledge. Large Language Models (LLMs) provide a useful starting point for designing such a tool since they 1) provide an interface where users can incorporate expert insights in natural language and 2) provide an opportunity for leveraging latent problem-relevant knowledge encoded in LLMs that users may not have themselves. We start by exploring strategies for eliciting explicit, coherent numerical predictive distributions from LLMs. We examine these joint predictive distributions, which we call LLM Processes, over arbitrarily-many quantities in settings such as forecasting, multi-dimensional regression, black-box optimization, and image modeling. We investigate the practical details of prompting to elicit coherent predictive distributions, and demonstrate their effectiveness at regression. Finally, we demonstrate the ability to usefully incorporate text into numerical predictions, improving predictive performance and giving quantitative structure that reflects qualitative descriptions. This lets us begin to explore the rich, grounded hypothesis space that LLMs implicitly encode.

Power-law scaling indicates that large-scale training with uniform sampling is prohibitively slow. Active learning methods aim to increase data efficiency by prioritizing learning on the most relevant examples. Despite their appeal, these methods have yet to be widely adopted since no one algorithm has been shown to a) generalize across models and tasks b) scale to large datasets and c) yield overall FLOP savings when accounting for the overhead of data selection. In this work we propose a method which satisfies these three properties, leveraging small, cheap proxy models to estimate "learnability" scores for datapoints, which are used to prioritize data for the training of much larger models. As a result, our models require 46% and 51% fewer training updates and up to 25% less total computation to reach the same performance as uniformly trained visual classifiers on JFT and multimodal models on ALIGN. Finally, we find our data-prioritization scheme to be complementary with recent data-curation and learning objectives, yielding a new state-of-the-art in several multimodal transfer tasks.

Federated learning (FL) enables collaborative model training across distributed clients while preserving data privacy. Despite its widespread adoption, most FL approaches focusing solely on privacy protection fall short in scenarios where trustworthiness is crucial, necessitating advancements in secure training, dependable decision-making mechanisms, robustness on corruptions, and enhanced performance with Non-IID data. To bridge this gap, we introduce Trustworthy Personalized Federated Learning (TPFL) framework designed for classification tasks via subjective logic in this paper. Specifically, TPFL adopts a unique approach by employing subjective logic to construct federated models, providing probabilistic decisions coupled with an assessment of uncertainty rather than mere probability assignments. By incorporating a trainable heterogeneity prior to the local training phase, TPFL effectively mitigates the adverse effects of data heterogeneity. Model uncertainty and instance uncertainty are further utilized to ensure the safety and reliability of the training and inference stages. Through extensive experiments on widely recognized federated learning benchmarks, we demonstrate that TPFL not only achieves competitive performance compared with advanced methods but also exhibits resilience against prevalent malicious attacks, robustness on domain shifts, and reliability in high-stake scenarios.

Knowledge representation learning (KRL) aims to represent entities and relations in knowledge graph in low-dimensional semantic space, which have been widely used in massive knowledge-driven tasks. In this article, we introduce the reader to the motivations for KRL, and overview existing approaches for KRL. Afterwards, we extensively conduct and quantitative comparison and analysis of several typical KRL methods on three evaluation tasks of knowledge acquisition including knowledge graph completion, triple classification, and relation extraction. We also review the real-world applications of KRL, such as language modeling, question answering, information retrieval, and recommender systems. Finally, we discuss the remaining challenges and outlook the future directions for KRL. The codes and datasets used in the experiments can be found in //github.com/thunlp/OpenKE.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司