Transformers are widely used in NLP tasks. However, current approaches to leveraging transformers to understand language expose one weak spot: Number understanding. In some scenarios, numbers frequently occur, especially in semi-structured data like tables. But current approaches to rich-number tasks with transformer-based language models abandon or lose some of the numeracy information - e.g., breaking numbers into sub-word tokens - which leads to many number-related errors. In this paper, we propose the LUNA framework which improves the numerical reasoning and calculation capabilities of transformer-based language models. With the number plugin of NumTok and NumBed, LUNA represents each number as a whole to model input. With number pre-training, including regression loss and model distillation, LUNA bridges the gap between number and vocabulary embeddings. To the best of our knowledge, this is the first work that explicitly injects numeracy capability into language models using Number Plugins. Besides evaluating toy models on toy tasks, we evaluate LUNA on three large-scale transformer models (RoBERTa, BERT, TabBERT) over three different downstream tasks (TATQA, TabFact, CrediTrans), and observe the performances of language models are constantly improved by LUNA. The augmented models also improve the official baseline of TAT-QA (EM: 50.15 -> 59.58) and achieve SOTA performance on CrediTrans (F1 = 86.17).
Transformers have gained popularity in the software engineering (SE) literature. These deep learning models are usually pre-trained through a self-supervised objective, meant to provide the model with basic knowledge about a language of interest (e.g., Java). A classic pre-training objective is the masked language model (MLM), in which a percentage of tokens from the input (e.g., a Java method) is masked, with the model in charge of predicting them. Once pre-trained, the model is then fine-tuned to support the specific downstream task of interest (e.g., code summarization). While there is evidence suggesting the boost in performance provided by pre-training, little is known about the impact of the specific pre-training objective(s) used. Indeed, MLM is just one of the possible pre-training objectives and recent work from the natural language processing field suggest that pre-training objectives tailored for the specific downstream task of interest may substantially boost the model's performance. In this study, we focus on the impact of pre-training objectives on the performance of transformers when automating code-related tasks. We start with a systematic literature review aimed at identifying the pre-training objectives used in SE. Then, we pre-train 32 transformers using both (i) generic pre-training objectives usually adopted in SE; and (ii) pre-training objectives tailored to specific code-related tasks subject of our experimentation, namely bug-fixing, code summarization, and code completion. We also compare the pre-trained models with non pre-trained ones. Our results show that: (i) pre-training helps in boosting performance only if the amount of fine-tuning data available is small; (ii) the MLM objective is usually sufficient to maximize the prediction performance of the model, even when comparing it with pre-training objectives specialized for the downstream task at hand.
This study presents three deidentified large medical text datasets, named DISCHARGE, ECHO and RADIOLOGY, which contain 50K, 16K and 378K pairs of report and summary that are derived from MIMIC-III, respectively. We implement convincing baselines of automated abstractive summarization on the proposed datasets with pre-trained encoder-decoder language models, including BERT2BERT, T5-large and BART. Further, based on the BART model, we leverage the sampled summaries from the train set as prior knowledge guidance, for encoding additional contextual representations of the guidance with the encoder and enhancing the decoding representations in the decoder. The experimental results confirm the improvement of ROUGE scores and BERTScore made by the proposed method, outperforming the larger model T5-large.
Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for short text understanding. But the conclusion is: There are no remarkable improvement for short text understanding for similar BERT structures. Data-centric method[12] can achieve better performance.
Practical natural language processing (NLP) tasks are commonly long-tailed with noisy labels. Those problems challenge the generalization and robustness of complex models such as Deep Neural Networks (DNNs). Some commonly used resampling techniques, such as oversampling or undersampling, could easily lead to overfitting. It is growing popular to learn the data weights leveraging a small amount of metadata. Besides, recent studies have shown the advantages of self-supervised pre-training, particularly to the under-represented data. In this work, we propose a general framework to handle the problem of both long-tail and noisy labels. The model is adapted to the domain of problems in a contrastive learning manner. The re-weighting module is a feed-forward network that learns explicit weighting functions and adapts weights according to metadata. The framework further adapts weights of terms in the loss function through a combination of the polynomial expansion of cross-entropy loss and focal loss. Our extensive experiments show that the proposed framework consistently outperforms baseline methods. Lastly, our sensitive analysis emphasizes the capability of the proposed framework to handle the long-tailed problem and mitigate the negative impact of noisy labels.
In recent years, pretrained neural language models (PNLMs) have taken the field of natural language processing by storm, achieving new benchmarks and state-of-the-art performances. These models often rely heavily on annotated data, which may not always be available. Data scarcity are commonly found in specialized domains, such as medical, or in low-resource languages that are underexplored by AI research. In this dissertation, we focus on mitigating data scarcity using data augmentation and neural ensemble learning techniques for neural language models. In both research directions, we implement neural network algorithms and evaluate their impact on assisting neural language models in downstream NLP tasks. Specifically, for data augmentation, we explore two techniques: 1) creating positive training data by moving an answer span around its original context and 2) using text simplification techniques to introduce a variety of writing styles to the original training data. Our results indicate that these simple and effective solutions improve the performance of neural language models considerably in low-resource NLP domains and tasks. For neural ensemble learning, we use a multilabel neural classifier to select the best prediction outcome from a variety of individual pretrained neural language models trained for a low-resource medical text simplification task.
Dynamic attention mechanism and global modeling ability make Transformer show strong feature learning ability. In recent years, Transformer has become comparable to CNNs methods in computer vision. This review mainly investigates the current research progress of Transformer in image and video applications, which makes a comprehensive overview of Transformer in visual learning understanding. First, the attention mechanism is reviewed, which plays an essential part in Transformer. And then, the visual Transformer model and the principle of each module are introduced. Thirdly, the existing Transformer-based models are investigated, and their performance is compared in visual learning understanding applications. Three image tasks and two video tasks of computer vision are investigated. The former mainly includes image classification, object detection, and image segmentation. The latter contains object tracking and video classification. It is significant for comparing different models' performance in various tasks on several public benchmark data sets. Finally, ten general problems are summarized, and the developing prospects of the visual Transformer are given in this review.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.