亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI-enabled precision medicine promises a transformational improvement in healthcare outcomes by enabling data-driven personalized diagnosis, prognosis, and treatment. However, the well-known "curse of dimensionality" and the clustered structure of biomedical data together interact to present a joint challenge in the high dimensional, limited observation precision medicine regime. To overcome both issues simultaneously we propose a simple and scalable approach to joint clustering and embedding that combines standard embedding methods with a convex clustering penalty in a modular way. This novel, cluster-aware embedding approach overcomes the complexity and limitations of current joint embedding and clustering methods, which we show with straightforward implementations of hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through both numerical experiments and real-world examples, we demonstrate that our approach outperforms traditional and contemporary clustering methods on highly underdetermined problems (e.g., with just tens of observations) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, but instead yields interpretable dendrograms of hierarchically clustered embeddings. Thus our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data, enabling scalable and interpretable biomarkers for precision medicine.

相關內容

As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we provide a comprehensive review of urban spatial-temporal prediction and propose a unified storage format for spatial-temporal data called atomic files. We also propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. Using LibCity, we conducted a series of experiments to validate the effectiveness of different models and components, and we summarized promising future technology developments and research directions for spatial-temporal prediction. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.

Variable selection is a procedure to attain the truly important predictors from inputs. Complex nonlinear dependencies and strong coupling pose great challenges for variable selection in high-dimensional data. In addition, real-world applications have increased demands for interpretability of the selection process. A pragmatic approach should not only attain the most predictive covariates, but also provide ample and easy-to-understand grounds for removing certain covariates. In view of these requirements, this paper puts forward an approach for transparent and nonlinear variable selection. In order to transparently decouple information within the input predictors, a three-step heuristic search is designed, via which the input predictors are grouped into four subsets: the relevant to be selected, and the uninformative, redundant, and conditionally independent to be removed. A nonlinear partial correlation coefficient is introduced to better identify the predictors which have nonlinear functional dependence with the response. The proposed method is model-free and the selected subset can be competent input for commonly used predictive models. Experiments demonstrate the superior performance of the proposed method against the state-of-the-art baselines in terms of prediction accuracy and model interpretability.

Imbalanced data poses a significant challenge in classification as model performance is affected by insufficient learning from minority classes. Balancing methods are often used to address this problem. However, such techniques can lead to problems such as overfitting or loss of information. This study addresses a more challenging aspect of balancing methods - their impact on model behavior. To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing. In addition to the variable importance method, this study uses the partial dependence profile and accumulated local effects techniques. Real and simulated datasets are tested, and an open-source Python package edgaro is developed to facilitate this analysis. The results obtained show significant changes in model behavior due to balancing methods, which can lead to biased models toward a balanced distribution. These findings confirm that balancing analysis should go beyond model performance comparisons to achieve higher reliability of machine learning models. Therefore, we propose a new method performance gain plot for informed data balancing strategy to make an optimal selection of balancing method by analyzing the measure of change in model behavior versus performance gain.

Contrastive learning has become a popular solution for few-shot Name Entity Recognization (NER). The conventional configuration strives to reduce the distance between tokens with the same labels and increase the distance between tokens with different labels. The effect of this setup may, however, in the medical domain, there are a lot of entities annotated as OUTSIDE (O), and they are undesirably pushed apart to other entities that are not labeled as OUTSIDE (O) by the current contrastive learning method end up with a noisy prototype for the semantic representation of the label, though there are many OUTSIDE (O) labeled entities are relevant to the labeled entities. To address this challenge, we propose a novel method named Weighted Prototypical Contrastive Learning for Medical Few Shot Named Entity Recognization (W-PROCER). Our approach primarily revolves around constructing the prototype-based contractive loss and weighting network. These components play a crucial role in assisting the model in differentiating the negative samples from OUTSIDE (O) tokens and enhancing the discrimination ability of contrastive learning. Experimental results show that our proposed W-PROCER framework significantly outperforms the strong baselines on the three medical benchmark datasets.

The Gaussian graphical model (GGM) incorporates an undirected graph to represent the conditional dependence between variables, with the precision matrix encoding partial correlation between pair of variables given the others. To achieve flexible and accurate estimation and inference of GGM, we propose the novel method FLAG, which utilizes the random effects model for pairwise conditional regression to estimate the precision matrix and applies statistical tests to recover the graph. Compared with existing methods, FLAG has several unique advantages: (i) it provides accurate estimation without sparsity assumptions on the precision matrix, (ii) it allows for element-wise inference of the precision matrix, (iii) it achieves computational efficiency by developing an efficient PX-EM algorithm and a MM algorithm accelerated with low-rank updates, and (iv) it enables joint estimation of multiple graphs using FLAG-Meta or FLAG-CA. The proposed methods are evaluated using various simulation settings and real data applications, including gene expression in the human brain, term association in university websites, and stock prices in the U.S. financial market. The results demonstrate that FLAG and its extensions provide accurate precision estimation and graph recovery.

Solving symbolic reasoning problems that require compositionality and systematicity is considered one of the key ingredients of human intelligence. However, symbolic reasoning is still a great challenge for deep learning models, which often cannot generalize the reasoning pattern to out-of-distribution test cases. In this work, we propose a hybrid system capable of solving arithmetic problems that require compositional and systematic reasoning over sequences of symbols. The model acquires such a skill by learning appropriate substitution rules, which are applied iteratively to the input string until the expression is completely resolved. We show that the proposed system can accurately solve nested arithmetical expressions even when trained only on a subset including the simplest cases, significantly outperforming both a sequence-to-sequence model trained end-to-end and a state-of-the-art large language model.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司