亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Happiness underlines the intuitive constructs of a specified population based on positive psychological outcomes. It is the cornerstone of the cognitive skills and exploring university student's happiness has been the essence of the researchers lately. In this study, we have analyzed the university student's happiness and its facets using statistical distribution charts; designing research questions. Furthermore, regression analysis, machine learning, and clustering algorithms were applied on the world happiness dataset and university student's dataset for training and testing respectively. Philosophy was the happiest department while Sociology the saddest; average happiness score being 2.8 and 2.44 respectively. Pearson coefficient of correlation was 0.74 for Health. Predicted happiness score was 5.2 and the goodness of model fit was 51%. train and test error being 0.52, 0.47 respectively. On a Confidence Interval(CI) of 5% p-value was least for Campus Environment(CE) and University Reputation(UR) and maximum for Extra-curricular Activities(ECA) and Work Balance(WB) (i.e. 0.184 and 0.228 respectively). RF with Clustering got the highest accuracy(89%) and F score(0.98) and the least error(17.91%), hence turned out to be best for our study

相關內容

The dominance of social media has added to the channels of bullying for perpetrators. Unfortunately, cyberbullying (CB) is the most prevalent phenomenon in todays cyber world, and is a severe threat to the mental and physical health of citizens. This opens the need to develop a robust system to prevent bullying content from online forums, blogs, and social media platforms to manage the impact in our society. Several machine learning (ML) algorithms have been proposed for this purpose. However, their performances are not consistent due to high class imbalance and generalisation issues. In recent years, large language models (LLMs) like BERT and RoBERTa have achieved state-of-the-art (SOTA) results in several natural language processing (NLP) tasks. Unfortunately, the LLMs have not been applied extensively for CB detection. In our paper, we explored the use of these models for cyberbullying (CB) detection. We have prepared a new dataset (D2) from existing studies (Formspring and Twitter). Our experimental results for dataset D1 and D2 showed that RoBERTa outperformed other models.

The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies.

Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the fine-tuning step for linearized models can serve as an effective mitigation strategy.

Despite Deep Learning's (DL) empirical success, our theoretical understanding of its efficacy remains limited. One notable paradox is that while conventional wisdom discourages perfect data fitting, deep neural networks are designed to do just that, yet they generalize effectively. This study focuses on exploring this phenomenon attributed to the implicit bias at play. Various sources of implicit bias have been identified, such as step size, weight initialization, optimization algorithm, and number of parameters. In this work, we focus on investigating the implicit bias originating from weight initialization. To this end, we examine the problem of solving underdetermined linear systems in various contexts, scrutinizing the impact of initialization on the implicit regularization when using deep networks to solve such systems. Our findings elucidate the role of initialization in the optimization and generalization paradoxes, contributing to a more comprehensive understanding of DL's performance characteristics.

Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry. In order to further investigate its complexity and the potential of quantum algorithms for quantum chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall showed quantum advantage (more precisely, BQP-completeness) for GLH with $6$-local Hamiltonians when the guiding state has fidelity (inverse-polynomially) close to $1/2$ with a ground state. In this paper, we optimally improve both the locality and the fidelity parameter: we show that the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians instead. Those make further steps towards establishing practical quantum advantage in quantum chemistry.

Whenever inspected by humans, reconstructed signals should not be distinguished from real ones. Typically, such a high perceptual quality comes at the price of high reconstruction error, and vice versa. We study this distortion-perception (DP) tradeoff over finite-alphabet channels, for the Wasserstein-$1$ distance induced by a general metric as the perception index, and an arbitrary distortion matrix. Under this setting, we show that computing the DP function and the optimal reconstructions is equivalent to solving a set of linear programming problems. We provide a structural characterization of the DP tradeoff, where the DP function is piecewise linear in the perception index. We further derive a closed-form expression for the case of binary sources.

We revisit the question of characterizing the convergence rate of plug-in estimators of optimal transport costs. It is well known that an empirical measure comprising independent samples from an absolutely continuous distribution on $\mathbb{R}^d$ converges to that distribution at the rate $n^{-1/d}$ in Wasserstein distance, which can be used to prove that plug-in estimators of many optimal transport costs converge at this same rate. However, we show that when the cost is smooth, this analysis is loose: plug-in estimators based on empirical measures converge quadratically faster, at the rate $n^{-2/d}$. As a corollary, we show that the Wasserstein distance between two distributions is significantly easier to estimate when the measures are well-separated. We also prove lower bounds, showing not only that our analysis of the plug-in estimator is tight, but also that no other estimator can enjoy significantly faster rates of convergence uniformly over all pairs of measures. Our proofs rely on empirical process theory arguments based on tight control of $L^2$ covering numbers for locally Lipschitz and semi-concave functions. As a byproduct of our proofs, we derive $L^\infty$ estimates on the displacement induced by the optimal coupling between any two measures satisfying suitable concentration and anticoncentration conditions, for a wide range of cost functions.

Recent work on implicit neural representations (INRs) has evidenced their potential for efficiently representing and encoding conventional video content. In this paper we, for the first time, extend their application to immersive (multi-view) videos, by proposing MV-HiNeRV, a new INR-based immersive video codec. MV-HiNeRV is an enhanced version of a state-of-the-art INR-based video codec, HiNeRV, which was developed for single-view video compression. We have modified the model to learn a different group of feature grids for each view, and share the learnt network parameters among all views. This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy that exists within multi-view videos. The proposed codec was used to compress multi-view texture and depth video sequences in the MPEG Immersive Video (MIV) Common Test Conditions, and tested against the MIV Test model (TMIV) that uses the VVenC video codec. The results demonstrate the superior performance of MV-HiNeRV, with significant coding gains (up to 72.33%) over TMIV. The implementation of MV-HiNeRV will be published for further development and evaluation.

The cultural landscape of interactions with dialogue agents is a compelling yet relatively unexplored territory. It's clear that various sociocultural aspects -- from communication styles and beliefs to shared metaphors and knowledge -- profoundly impact these interactions. To delve deeper into this dynamic, we introduce cuDialog, a first-of-its-kind benchmark for dialogue generation with a cultural lens. We also develop baseline models capable of extracting cultural attributes from dialogue exchanges, with the goal of enhancing the predictive accuracy and quality of dialogue agents. To effectively co-learn cultural understanding and multi-turn dialogue predictions, we propose to incorporate cultural dimensions with dialogue encoding features. Our experimental findings highlight that incorporating cultural value surveys boosts alignment with references and cultural markers, demonstrating its considerable influence on personalization and dialogue quality. To facilitate further exploration in this exciting domain, we publish our benchmark publicly accessible at //github.com/yongcaoplus/cuDialog.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司