亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classic BFT consensus protocols guarantee safety and liveness for all clients if fewer than one-third of replicas are faulty. However, in applications such as high-value payments, some clients may want to prioritize safety over liveness. Flexible consensus allows each client to opt for a higher safety resilience, albeit at the expense of reduced liveness resilience. We present the first construction that allows optimal safety--liveness tradeoff for every client simultaneously. This construction is modular and is realized as an add-on applied on top of an existing consensus protocol. The add-on consists of an additional round of voting and permanent locking done by the replicas, to sidestep a sub-optimal quorum-intersection-based constraint present in previous solutions. We adapt our construction to the existing Ethereum protocol to derive optimal flexible confirmation rules that clients can adopt unilaterally without requiring system-wide changes. This is possible because existing Ethereum protocol features can double as the extra voting and locking. We demonstrate an implementation using Ethereum's consensus API.

相關內容

Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability. However, the potentially infinite number of Degrees of Freedom makes their modeling a daunting task, and in many cases only an approximated description is available. This challenge makes reinforcement learning (RL) based approaches inefficient when deployed on a realistic scenario, due to the large domain gap between models and the real platform. In this work, we demonstrate, for the first time, how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots with: i) robustness w.r.t. unknown dynamics parameters; ii) reduced training times by exploiting drastically simpler dynamic models for learning; iii) better environment exploration, which can lead to exploitation of environmental constraints for optimal performance. Moreover, we introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects. We provide an extensive evaluation in simulation on four different tasks and two soft robot designs, opening interesting perspectives for future research on Reinforcement Learning for closed-loop soft robot control.

Uncrewed Aerial Vehicle (UAV) research faces challenges with safety, scalability, costs, and ecological impact when conducting hardware testing. High-fidelity simulators offer a vital solution by replicating real-world conditions to enable the development and evaluation of novel perception and control algorithms. However, the large number of available simulators poses a significant challenge for researchers to determine which simulator best suits their specific use-case, based on each simulator's limitations and customization readiness. This paper includes a systematic overview of 38 existing UAV simulators and presents a set of decision factors for their selection, aiming to enhance the efficiency and safety of research endeavors.

Designing for AI trustworthiness is challenging, with a lack of practical guidance despite extensive literature on trust. The Multisource AI Scorecard Table (MAST), a checklist rating system, addresses this gap in designing and evaluating AI-enabled decision support systems. We propose the Principled Approach for Designing Trustable Human-centered AI systems using MAST Methodology (PADTHAI-MM), a nine-step framework what we demonstrate through the iterative design of a text analysis platform called the REporting Assistant for Defense and Intelligence Tasks (READIT). We designed two versions of READIT, high-MAST including AI context and explanations, and low-MAST resembling a "black box" type system. Participant feedback and state-of-the-art AI knowledge was integrated in the design process, leading to a redesigned prototype tested by participants in an intelligence reporting task. Results show that MAST-guided design can improve trust perceptions, and that MAST criteria can be linked to performance, process, and purpose information, providing a practical and theory-informed basis for AI system design.

Swarms of Unmanned Aerial Vehicles (UAV) have demonstrated enormous potential in many industrial and commercial applications. However, before deploying UAVs in the real world, it is essential to ensure they can operate safely in complex environments, especially with limited communication capabilities. To address this challenge, we propose a control-aware learning-based trajectory prediction algorithm that can enable communication-efficient UAV swarm control in a cluttered environment. Specifically, our proposed algorithm can enable each UAV to predict the planned trajectories of its neighbors in scenarios with various levels of communication capabilities. The predicted planned trajectories will serve as input to a distributed model predictive control (DMPC) approach. The proposed algorithm combines (1) a trajectory compression and reconstruction model based on Variational Auto-Encoder, (2) a trajectory prediction model based on EvolveGCN, a graph convolutional network (GCN) that can handle dynamic graphs, and (3) a KKT-informed training approach that applies the Karush-Kuhn-Tucker (KKT) conditions in the training process to encode DMPC information into the trained neural network. We evaluate our proposed algorithm in a funnel-like environment. Results show that the proposed algorithm outperforms state-of-the-art benchmarks, providing close-to-optimal control performance and robustness to limited communication capabilities and measurement noises.

Neighbourhood watch is a concept that allows a community to distribute a complex security task in between all members. Members of the community carry out individual security tasks to contribute to the overall security of it. It reduces the workload of a particular individual while securing all members and allowing them to carry out a multitude of security tasks. Wireless sensor networks (WSNs) are composed of resource-constraint independent battery driven computers as nodes communicating wirelessly. Security in WSNs is essential. Without sufficient security, an attacker is able to eavesdrop the communication, tamper monitoring results or deny critical nodes providing their service in a way to cut off larger network parts. The resource-constraint nature of sensor nodes prevents them from running full-fledged security protocols. Instead, it is necessary to assess the most significant security threats and implement specialised protocols. A neighbourhood-watch inspired distributed security scheme for WSNs has been introduced by Langend\"orfer. Its goal is to increase the variety of attacks a WSN can fend off. A framework of such complexity has to be designed in multiple steps. Here, we introduce an approach to determine distributions of security means on large-scale static homogeneous WSNs. Therefore, we model WSNs as undirected graphs in which two nodes connected iff they are in transmission range. The framework aims to partition the graph into $n$ distinct security means resulting in the targeted distribution. The underlying problems turn out to be NP hard and we attempt to solve them using linear programs (LPs). To evaluate the computability of the LPs, we generate large numbers of random {\lambda}-precision unit disk graphs (UDGs) as representation of WSNs. For this purpose, we introduce a novel {\lambda}-precision UDG generator to model WSNs with a minimal distance in between nodes.

Bayesian Neural Networks (BayNNs) naturally provide uncertainty in their predictions, making them a suitable choice in safety-critical applications. Additionally, their realization using memristor-based in-memory computing (IMC) architectures enables them for resource-constrained edge applications. In addition to predictive uncertainty, however, the ability to be inherently robust to noise in computation is also essential to ensure functional safety. In particular, memristor-based IMCs are susceptible to various sources of non-idealities such as manufacturing and runtime variations, drift, and failure, which can significantly reduce inference accuracy. In this paper, we propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in IMC architectures. To achieve this, we introduce a novel normalization layer combined with stochastic affine transformations. Empirical results in various benchmark datasets show a graceful degradation in inference accuracy, with an improvement of up to $58.11\%$.

This paper comprehensively explores the ethical challenges arising from security threats to Language Learning Models (LLMs). These intricate digital repositories are increasingly integrated into our daily lives, making them prime targets for attacks that can compromise their training data and the confidentiality of their data sources. The paper delves into the nuanced ethical repercussions of such security threats on society and individual privacy. We scrutinize five major threats: prompt injection, jailbreaking, Personal Identifiable Information (PII) exposure, sexually explicit content, and hate based content, going beyond mere identification to assess their critical ethical consequences and the urgency they create for robust defensive strategies. The escalating reliance on LLMs underscores the crucial need for ensuring these systems operate within the bounds of ethical norms, particularly as their misuse can lead to significant societal and individual harm. We propose conceptualizing and developing an evaluative tool tailored for LLMs, which would serve a dual purpose, guiding developers and designers in preemptive fortification of backend systems and scrutinizing the ethical dimensions of LLM chatbot responses during the testing phase. By comparing LLM responses with those expected from humans in a moral context, we aim to discern the degree to which AI behaviors align with the ethical values held by a broader society. Ultimately, this paper not only underscores the ethical troubles presented by LLMs, it also highlights a path toward cultivating trust in these systems.

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

北京阿比特科技有限公司