亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliable

相關內容

Many researchers and organizations, such as WHO and UNICEF, have raised awareness of the dangers of advertisements targeted at children. While most existing laws only regulate ads on television that may reach children, lawmakers have been working on extending regulations to online advertising and, for example, forbid (e.g., the DSA) or restrict (e.g., the COPPA) advertising based on profiling to children. At first sight, ad platforms such as Google seem to protect children by not allowing advertisers to target their ads to users who are less than 18 years old. However, this paper shows that other targeting features can be exploited to reach children. For example, on YouTube, advertisers can target their ads to users watching a particular video through placement-based targeting, a form of contextual targeting. Hence, advertisers can target children by placing their ads in children-focused videos. Through a series of ad experiments, we show that placement-based targeting is possible on children-focused videos and enables marketing to children. In addition, our ad experiments show that advertisers can use targeting based on profiling (e.g., interest, location, behavior) in combination with placement-based advertising on children-focused videos. We discuss the lawfulness of these two practices concerning DSA and COPPA. Finally, we investigate to which extent real-world advertisers are employing placement-based targeting to reach children with ads on YouTube. We propose a measurement methodology consisting of building a Chrome extension to capture ads and instrument six browser profiles to watch children-focused videos. Our results show that 7% of ads that appear in the children-focused videos we test use placement-based targeting. Hence, targeting children with ads on YouTube is not only hypothetically possible but also occurs in practice...

Modern data sets, such as those in healthcare and e-commerce, are often derived from many individuals or systems but have insufficient data from each source alone to separately estimate individual, often high-dimensional, model parameters. If there is shared structure among systems however, it may be possible to leverage data from other systems to help estimate individual parameters, which could otherwise be non-identifiable. In this paper, we assume systems share a latent low-dimensional parameter space and propose a method for recovering $d$-dimensional parameters for $N$ different linear systems, even when there are only $T<d$ observations per system. To do so, we develop a three-step algorithm which estimates the low-dimensional subspace spanned by the systems' parameters and produces refined parameter estimates within the subspace. We provide finite sample subspace estimation error guarantees for our proposed method. Finally, we experimentally validate our method on simulations with i.i.d. regression data and as well as correlated time series data.

Cybersecurity concerns about Internet of Things (IoT) devices and infrastructure are growing each year. In response, organizations worldwide have published IoT cybersecurity guidelines to protect their citizens and customers. These guidelines constrain the development of IoT systems, which include substantial software components both on-device and in the Cloud. While these guidelines are being widely adopted, e.g. by US federal contractors, their content and merits have not been critically examined. Two notable gaps are: (1) We do not know how these guidelines differ by the topics and details of their recommendations; and (2) We do not know how effective they are at mitigating real-world IoT failures. In this paper, we address these questions through an exploratory sequential mixed-method study of IoT cybersecurity guidelines. We collected a corpus of 142 general IoT cybersecurity guidelines, sampling them for recommendations until saturation was reached. From the resulting 958 unique recommendations, we iteratively developed a hierarchical taxonomy following grounded theory coding principles. We measured the guidelines' usefulness by asking novice engineers about the actionability of each recommendation, and by matching cybersecurity recommendations to the root causes of failures (CVEs and news stories). We report that: (1) Comparing guidelines to one another, each guideline has gaps in its topic coverage and comprehensiveness; and (2) Although 87.2% recommendations are actionable and the union of the guidelines mitigates all 17 of the failures from news stories, 21% of the CVEs apparently evade the guidelines. In summary, we report shortcomings in every guideline's depth and breadth, but as a whole they are capable of preventing security issues. Our results will help software engineers determine which and how many guidelines to study as they implement IoT systems.

System correctness is one of the most crucial and challenging objectives in software and hardware systems. With the increasing evolution of connected and distributed systems, ensuring their correctness requires the use of formal verification for multi-agent systems. In this paper, we present a summary of certain results on model checking for multi-agent systems that derive from the selection of strategies and information for agents. Additionally, we discuss some open directions for future research.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司