Conformal prediction has been a popular distribution-free framework for uncertainty quantification. In this paper, we present a novel conformal prediction method for time-series, which we call Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI). Specifically, KOWCPI adapts the classic Reweighted Nadaraya-Watson (RNW) estimator for quantile regression on dependent data and learns optimal data-adaptive weights. Theoretically, we tackle the challenge of establishing a conditional coverage guarantee for non-exchangeable data under strong mixing conditions on the non-conformity scores. We demonstrate the superior performance of KOWCPI on real time-series against state-of-the-art methods, where KOWCPI achieves narrower confidence intervals without losing coverage.
In this paper we give local error estimates in Sobolev norms for the Galerkin method applied to strongly elliptic pseudodifferential equations on a polygon. By using the K-operator, an operator which averages the values of the Galerkin solution, we construct improved approximations.
In this paper we propose a modification to the invariant polytope algorithm (ipa) using ideas of the finite expressible tree algorithm (feta) by M\"oller and Reif. We show that our new feta-flavoured-ipa applies to a wider range of matrix families.
In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.
Spanner constructions focus on the initial design of the network. However, networks tend to improve over time. In this paper, we focus on the improvement step. Given a graph and a budget $k$, which $k$ edges do we add to the graph to minimise its dilation? Gudmundsson and Wong [TALG'22] provided the first positive result for this problem, but their approximation factor is linear in $k$. Our main result is a $(2 \sqrt[r]{2} \ k^{1/r},2r)$-bicriteria approximation that runs in $O(n^3 \log n)$ time, for all $r \geq 1$. In other words, if $t^*$ is the minimum dilation after adding any $k$ edges to a graph, then our algorithm adds $O(k^{1+1/r})$ edges to the graph to obtain a dilation of $2rt^*$. Moreover, our analysis of the algorithm is tight under the Erd\H{o}s girth conjecture.
In this paper, conditional stability estimates are derived for unique continuation and Cauchy problems associated to the Poisson equation in ultra-weak variational form. Numerical approximations are obtained as minima of regularized least squares functionals. The arising dual norms are replaced by discretized dual norms, which leads to a mixed formulation in terms of trial- and test-spaces. For stable pairs of such spaces, and a proper choice of the regularization parameter, the $L_2$-error on a subdomain in the obtained numerical approximation can be bounded by the best possible fractional power of the sum of the data error and the error of best approximation. Compared to the use of a standard variational formulation, the latter two errors are measured in weaker norms. To avoid the use of $C^1$-finite element test spaces, nonconforming finite element test spaces can be applied as well. They either lead to the qualitatively same error bound, or in a simplified version, to such an error bound modulo an additional data oscillation term. Numerical results illustrate our theoretical findings.
In this work, we aim to develop energy-stable parametric finite element approximations for a sharp-interface model with strong surface energy anisotropy, which is derived from the first variation of an energy functional composed of film/vapor interfacial energy, substrate energy, and regularized Willmore energy. By introducing two geometric relations, we innovatively establish an equivalent regularized sharp-interface model and further construct an energy-stable parametric finite element algorithm for this equivalent model. We provide a detailed proof of the energy stability of the numerical scheme, addressing a gap in the relevant theory. Additionally, we develop another structure-preserving parametric finite element scheme that can preserve both area conservation and energy stability. Finally, we present several numerical simulations to show accuracy and efficiency as well as some structure-preserving properties of the proposed numerical methods. More importantly, extensive numerical simulations reveal that our schemes provide better mesh quality and are more suitable for long-term computations.
In this paper we consider the numerical solution of fractional terminal value problems (FDE-TVPs). In particular, the proposed procedure uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems (FDE-IVPs), able to produce spectrally accurate solutions of FDE problems. Some numerical tests are reported to make evidence of its effectiveness.
In this paper, we propose a new numerical strategy for the stabilization of evolution systems. The method is based on the methodology given by Ammari, Nicaise and Pignotti in "Stabilization by switching time-delay, Asymptot. Anal., 83 (2013), 263--283". This method is then implemented in 1D by suitable numerical approximation techniques. Numerical experiments complete this study to confirm the theoretical announced results.
This paper investigates an efficient exponential integrator generalized multiscale finite element method for solving a class of time-evolving partial differential equations in bounded domains. The proposed method first performs the spatial discretization of the model problem using constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM). This approach consists of two stages. First, the auxiliary space is constructed by solving local spectral problems, where the basis functions corresponding to small eigenvalues are captured. The multiscale basis functions are obtained in the second stage using the auxiliary space by solving local energy minimization problems over the oversampling domains. The basis functions have exponential decay outside the corresponding local oversampling regions. We shall consider the first and second-order explicit exponential Runge-Kutta approach for temporal discretization and to build a fully discrete numerical solution. The exponential integration strategy for the time variable allows us to take full advantage of the CEM-GMsFEM as it enables larger time steps due to its stability properties. We derive the error estimates in the energy norm under the regularity assumption. Finally, we will provide some numerical experiments to sustain the efficiency of the proposed method.
In binary polynomial optimization, the goal is to find a binary point maximizing a given polynomial function. In this paper, we propose a novel way of formulating this general optimization problem, which we call factorized binary polynomial optimization. In this formulation, we assume that the variables are partitioned into a fixed number of sets, and that the objective function is written as a sum of r products of linear functions, each one involving only variables in one set of the partition. Our main result is an algorithm that solves factorized binary polynomial optimization in strongly polynomial time, when r is fixed. This result provides a vast new class of tractable instances of binary polynomial optimization, and it even improves on the state-of-the-art for quadratic objective functions, both in terms of generality and running time. We demonstrate the applicability of our result through the binary tensor factorization problem, which arises in mining discrete patterns in data, and that contains as a special case the rank-1 Boolean tensor factorization problem. Our main result implies that these problems can be solved in strongly polynomial time, if the input tensor has fixed rank, and a rank factorization is given. For the rank-1 Boolean matrix factorization problem, we only require that the input matrix has fixed rank.