亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study estimation of causal effects in staggered rollout designs, i.e. settings where there is staggered treatment adoption and the timing of treatment is as-good-as randomly assigned. We derive the most efficient estimator in a class of estimators that nests several popular generalized difference-in-differences methods. A feasible plug-in version of the efficient estimator is asymptotically unbiased with efficiency (weakly) dominating that of existing approaches. We provide both $t$-based and permutation-test-based methods for inference. In an application to a training program for police officers, confidence intervals for the proposed estimator are as much as eight times shorter than for existing approaches.

相關內容

Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing due to its various applications, such as compression, object detection, robotic grasping, 3D surface reconstruction, etc. There exist several efficient approaches for solving this problem for clean 3D point clouds. However, it is a challenging problem to solve in the presence of outliers and missing parts. The existing methods try to overcome this challenge mostly by voting-based techniques but do not work efficiently. In this work, we proposed a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts. We pose the problem of finding the optimal estimator for the reflection symmetry as an optimization problem on a 2-Sphere that quickly converges to the global solution for an approximate initialization. We further adapt the heat kernel signature for symmetry invariant matching of mirror symmetric points. This approach helps us to decouple the chicken-and-egg problem of finding the optimal symmetry plane and correspondences between the reflective symmetric points. The proposed approach achieves comparable mean ground-truth error and 4.5\% increment in the F-score as compared to the state-of-the-art approaches on the benchmark dataset.

This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.

A lattice of integers is the collection of all linear combinations of a set of vectors for which all entries of the vectors are integers and all coefficients in the linear combinations are also integers. Lattice reduction refers to the problem of finding a set of vectors in a given lattice such that the collection of all integer linear combinations of this subset is still the entire original lattice and so that the Euclidean norms of the subset are reduced. The present paper proposes simple, efficient iterations for lattice reduction which are guaranteed to reduce the Euclidean norms of the basis vectors (the vectors in the subset) monotonically during every iteration. Each iteration selects the basis vector for which projecting off (with integer coefficients) the components of the other basis vectors along the selected vector minimizes the Euclidean norms of the reduced basis vectors. Each iteration projects off the components along the selected basis vector and efficiently updates all information required for the next iteration to select its best basis vector and perform the associated projections.

The auction of a single indivisible item is one of the most celebrated problems in mechanism design with transfers. Despite its simplicity, it provides arguably the cleanest and most insightful results in the literature. When the information that the auction is running is available to every participant, Myerson [20] provided a seminal result to characterize the incentive-compatible auctions along with revenue optimality. However, such a result does not hold in an auction on a network, where the information of the auction is spread via the agents, and they need incentives to forward the information. In recent times, a few auctions (e.g., [13, 18]) were designed that appropriately incentivized the intermediate nodes on the network to promulgate the information to potentially more valuable bidders. In this paper, we provide a Myerson-like characterization of incentive-compatible auctions on a network and show that the currently known auctions fall within this class of randomized auctions. We then consider a special class called the referral auctions that are inspired by the multi-level marketing mechanisms [1, 6, 7] and obtain the structure of a revenue optimal referral auction for i.i.d. bidders. Through experiments, we show that even for non-i.i.d. bidders there exist auctions following this characterization that can provide a higher revenue than the currently known auctions on networks.

Cross-validation is a widely used technique for evaluating the performance of prediction models. It helps avoid the optimism bias in error estimates, which can be significant for models built using complex statistical learning algorithms. However, since the cross-validation estimate is a random value dependent on observed data, it is essential to accurately quantify the uncertainty associated with the estimate. This is especially important when comparing the performance of two models using cross-validation, as one must determine whether differences in error estimates are a result of chance fluctuations. Although various methods have been developed for making inferences on cross-validation estimates, they often have many limitations, such as stringent model assumptions This paper proposes a fast bootstrap method that quickly estimates the standard error of the cross-validation estimate and produces valid confidence intervals for a population parameter measuring average model performance. Our method overcomes the computational challenge inherent in bootstrapping the cross-validation estimate by estimating the variance component within a random effects model. It is just as flexible as the cross-validation procedure itself. To showcase the effectiveness of our approach, we employ comprehensive simulations and real data analysis across three diverse applications.

We study sampling problems associated with potentials that lack smoothness. The potentials can be either convex or non-convex. Departing from the standard smooth setting, the potentials are only assumed to be weakly smooth or non-smooth, or the summation of multiple such functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling for both non-convex and convex potentials that are not necessarily smooth. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.

Randomized controlled trials (RCTs) are the gold standard for causal inference, but they are often powered only for average effects, making estimation of heterogeneous treatment effects (HTEs) challenging. Conversely, large-scale observational studies (OS) offer a wealth of data but suffer from confounding bias. Our paper presents a novel framework to leverage OS data for enhancing the efficiency in estimating conditional average treatment effects (CATEs) from RCTs while mitigating common biases. We propose an innovative approach to combine RCTs and OS data, expanding the traditionally used control arms from external sources. The framework relaxes the typical assumption of CATE invariance across populations, acknowledging the often unaccounted systematic differences between RCT and OS participants. We demonstrate this through the special case of a linear outcome model, where the CATE is sparsely different between the two populations. The core of our framework relies on learning potential outcome means from OS data and using them as a nuisance parameter in CATE estimation from RCT data. We further illustrate through experiments that using OS findings reduces the variance of the estimated CATE from RCTs and can decrease the required sample size for detecting HTEs.

Quantifying treatment effect heterogeneity is a crucial task in many areas of causal inference, e.g. optimal treatment allocation and estimation of subgroup effects. We study the problem of estimating the level sets of the conditional average treatment effect (CATE), identified under the no-unmeasured-confounders assumption. Given a user-specified threshold, the goal is to estimate the set of all units for whom the treatment effect exceeds that threshold. For example, if the cutoff is zero, the estimand is the set of all units who would benefit from receiving treatment. Assigning treatment just to this set represents the optimal treatment rule that maximises the mean population outcome. Similarly, cutoffs greater than zero represent optimal rules under resource constraints. The level set estimator that we study follows the plug-in principle and consists of simply thresholding a good estimator of the CATE. While many CATE estimators have been recently proposed and analysed, how their properties relate to those of the corresponding level set estimators remains unclear. Our first goal is thus to fill this gap by deriving the asymptotic properties of level set estimators depending on which estimator of the CATE is used. Next, we identify a minimax optimal estimator in a model where the CATE, the propensity score and the outcome model are Holder-smooth of varying orders. We consider data generating processes that satisfy a margin condition governing the probability of observing units for whom the CATE is close to the threshold. We investigate the performance of the estimators in simulations and illustrate our methods on a dataset used to study the effects on mortality of laparoscopic vs open surgery in the treatment of various conditions of the colon.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

北京阿比特科技有限公司