Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios.
Detecting objects across various scales remains a significant challenge in computer vision, particularly in tasks such as Rice Leaf Disease (RLD) detection, where objects exhibit considerable scale variations. Traditional object detection methods often struggle to address these variations, resulting in missed detections or reduced accuracy. In this study, we propose the multi-scale Attention Pyramid module (mAPm), a novel approach that integrates dilated convolutions into the Feature Pyramid Network (FPN) to enhance multi-scale information ex-traction. Additionally, we incorporate a global Multi-Head Self-Attention (MHSA) mechanism and a deconvolutional layer to refine the up-sampling process. We evaluate mAPm on YOLOv7 using the MRLD and COCO datasets. Compared to vanilla FPN, BiFPN, NAS-FPN, PANET, and ACFPN, mAPm achieved a significant improvement in Average Precision (AP), with a +2.61% increase on the MRLD dataset compared to the baseline FPN method in YOLOv7. This demonstrates its effectiveness in handling scale variations. Furthermore, the versatility of mAPm allows its integration into various FPN-based object detection models, showcasing its potential to advance object detection techniques.
Despite progress in video-language modeling, the computational challenge of interpreting long-form videos in response to task-specific linguistic queries persists, largely due to the complexity of high-dimensional video data and the misalignment between language and visual cues over space and time. To tackle this issue, we introduce a novel approach called Language-guided Spatial-Temporal Prompt Learning (LSTP). This approach features two key components: a Temporal Prompt Sampler (TPS) with optical flow prior that leverages temporal information to efficiently extract relevant video content, and a Spatial Prompt Solver (SPS) that adeptly captures the intricate spatial relationships between visual and textual elements. By harmonizing TPS and SPS with a cohesive training strategy, our framework significantly enhances computational efficiency, temporal understanding, and spatial-temporal alignment. Empirical evaluations across two challenging tasks--video question answering and temporal question grounding in videos--using a variety of video-language pretrainings (VLPs) and large language models (LLMs) demonstrate the superior performance, speed, and versatility of our proposed LSTP paradigm.
Large Language Models (LLMs) have shown impressive abilities in data annotation, opening the way for new approaches to solve classic NLP problems. In this paper, we show how to use LLMs to create NuNER, a compact language representation model specialized in the Named Entity Recognition (NER) task. NuNER can be fine-tuned to solve downstream NER problems in a data-efficient way, outperforming similar-sized foundation models in the few-shot regime and competing with much larger LLMs. We find that the size and entity-type diversity of the pre-training dataset are key to achieving good performance. We view NuNER as a member of the broader family of task-specific foundation models, recently unlocked by LLMs.
This paper focuses on semi-supervised crowd counting, where only a small portion of the training data are labeled. We formulate the pixel-wise density value to regress as a probability distribution, instead of a single deterministic value. On this basis, we propose a semi-supervised crowd-counting model. Firstly, we design a pixel-wise distribution matching loss to measure the differences in the pixel-wise density distributions between the prediction and the ground truth; Secondly, we enhance the transformer decoder by using density tokens to specialize the forwards of decoders w.r.t. different density intervals; Thirdly, we design the interleaving consistency self-supervised learning mechanism to learn from unlabeled data efficiently. Extensive experiments on four datasets are performed to show that our method clearly outperforms the competitors by a large margin under various labeled ratio settings. Code will be released at //github.com/LoraLinH/Semi-supervised-Counting-via-Pixel-by-pixel-Density-Distribution-Modelling.
Weakly supervised visual recognition using inexact supervision is a critical yet challenging learning problem. It significantly reduces human labeling costs and traditionally relies on multi-instance learning and pseudo-labeling. This paper introduces WeakSAM and solves the weakly-supervised object detection (WSOD) and segmentation by utilizing the pre-learned world knowledge contained in a vision foundation model, i.e., the Segment Anything Model (SAM). WeakSAM addresses two critical limitations in traditional WSOD retraining, i.e., pseudo ground truth (PGT) incompleteness and noisy PGT instances, through adaptive PGT generation and Region of Interest (RoI) drop regularization. It also addresses the SAM's problems of requiring prompts and category unawareness for automatic object detection and segmentation. Our results indicate that WeakSAM significantly surpasses previous state-of-the-art methods in WSOD and WSIS benchmarks with large margins, i.e. average improvements of 7.4% and 8.5%, respectively. The code is available at \url{//github.com/hustvl/WeakSAM}.
Occluded person re-identification (Re-ID) aims to address the potential occlusion problem when matching occluded or holistic pedestrians from different camera views. Many methods use the background as artificial occlusion and rely on attention networks to exclude noisy interference. However, the significant discrepancy between simple background occlusion and realistic occlusion can negatively impact the generalization of the network. To address this issue, we propose a novel transformer-based Attention Disturbance and Dual-Path Constraint Network (ADP) to enhance the generalization of attention networks. Firstly, to imitate real-world obstacles, we introduce an Attention Disturbance Mask (ADM) module that generates an offensive noise, which can distract attention like a realistic occluder, as a more complex form of occlusion. Secondly, to fully exploit these complex occluded images, we develop a Dual-Path Constraint Module (DPC) that can obtain preferable supervision information from holistic images through dual-path interaction. With our proposed method, the network can effectively circumvent a wide variety of occlusions using the basic ViT baseline. Comprehensive experimental evaluations conducted on person re-ID benchmarks demonstrate the superiority of ADP over state-of-the-art methods.
Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at //github.com/Yuliang-Liu/Monkey.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.