亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Church's simple type theory is often deemed too simple for elaborate mathematical constructions. In particular, doubts were raised whether schemes could be formalized in this setting and a challenge was issued. Schemes are sophisticated mathematical objects in algebraic geometry introduced by Alexander Grothendieck in 1960. In this article we report on a successful formalization of schemes in the simple type theory of the proof assistant Isabelle/HOL, and we discuss the design choices which make this work possible. We show in the particular case of schemes how the powerful dependent types of Coq or Lean can be traded for a minimalist apparatus called locales.

相關內容

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

We present PHORHUM, a novel, end-to-end trainable, deep neural network methodology for photorealistic 3D human reconstruction given just a monocular RGB image. Our pixel-aligned method estimates detailed 3D geometry and, for the first time, the unshaded surface color together with the scene illumination. Observing that 3D supervision alone is not sufficient for high fidelity color reconstruction, we introduce patch-based rendering losses that enable reliable color reconstruction on visible parts of the human, and detailed and plausible color estimation for the non-visible parts. Moreover, our method specifically addresses methodological and practical limitations of prior work in terms of representing geometry, albedo, and illumination effects, in an end-to-end model where factors can be effectively disentangled. In extensive experiments, we demonstrate the versatility and robustness of our approach. Our state-of-the-art results validate the method qualitatively and for different metrics, for both geometric and color reconstruction.

In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.

The shift towards end-to-end deep learning has brought unprecedented advances in many areas of computer vision. However, deep neural networks are trained on images with resolutions that rarely exceed $1,000 \times 1,000$ pixels. The growing use of scanners that create images with extremely high resolutions (average can be $100,000 \times 100,000$ pixels) thereby presents novel challenges to the field. Most of the published methods preprocess high-resolution images into a set of smaller patches, imposing an a priori belief on the best properties of the extracted patches (magnification, field of view, location, etc.). Herein, we introduce Magnifying Networks (MagNets) as an alternative deep learning solution for gigapixel image analysis that does not rely on a preprocessing stage nor requires the processing of billions of pixels. MagNets can learn to dynamically retrieve any part of a gigapixel image, at any magnification level and field of view, in an end-to-end fashion with minimal ground truth (a single global, slide-level label). Our results on the publicly available Camelyon16 and Camelyon17 datasets corroborate to the effectiveness and efficiency of MagNets and the proposed optimization framework for whole slide image classification. Importantly, MagNets process far less patches from each slide than any of the existing approaches ($10$ to $300$ times less).

This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.

Heavy ball momentum is a popular acceleration idea in stochastic optimization. There have been several attempts to understand its perceived benefits, but the complete picture is still unclear. Specifically, the error expression in the presence of noise has two separate terms: the bias and the variance, but most existing works only focus on bias and show that momentum accelerates its decay. Such analyses overlook the interplay between bias and variance and, therefore, miss important implications. In this work, we analyze a sample complexity bound of stochastic approximation algorithms with heavy-ball momentum that accounts for both bias and variance. We find that for the same step size, which is small enough, the iterates with momentum have improved sample complexity compared to the ones without. However, by using a different step-size sequence, the non-momentum version can nullify this benefit. Subsequently, we show that our sample complexity bounds are indeed tight for a small enough neighborhood around the solution and large enough noise variance. Our analysis also sheds some light on the finite-time behavior of these algorithms. This explains the perceived benefit in the initial phase of momentum-based schemes.

Motivated by problems from neuroimaging in which existing approaches make use of "mass univariate" analysis which neglects spatial structure entirely, but the full joint modelling of all quantities of interest is computationally infeasible, a novel method for incorporating spatial dependence within a (potentially large) family of model-selection problems is presented. Spatial dependence is encoded via a Markov random field model for which a variant of the pseudo-marginal Markov chain Monte Carlo algorithm is developed and extended by a further augmentation of the underlying state space. This approach allows the exploitation of existing unbiased marginal likelihood estimators used in settings in which spatial independence is normally assumed thereby facilitating the incorporation of spatial dependence using non-spatial estimates with minimal additional development effort. The proposed algorithm can be realistically used for analysis of %smaller subsets of large image moderately sized data sets such as $2$D slices of whole $3$D dynamic PET brain images or other regions of interest. Principled approximations of the proposed method, together with simple extensions based on the augmented spaces, are investigated and shown to provide similar results to the full pseudo-marginal method. Such approximations and extensions allow the improved performance obtained by incorporating spatial dependence to be obtained at negligible additional cost. An application to measured PET image data shows notable improvements in revealing underlying spatial structure when compared to current methods that assume spatial independence.

Refractive freeform components are becoming increasingly relevant for generating controlled patterns of light, because of their capability to spatially-modulate optical signals with high efficiency and low background. However, the use of these devices is still limited by difficulties in manufacturing macroscopic elements with complex, 3-dimensional (3D) surface reliefs. Here, 3D-printed and stretchable magic windows generating light patterns by refraction are introduced. The shape and, consequently, the light texture achieved can be changed through controlled device strain. Cryptographic magic windows are demonstrated through exemplary light patterns, including micro-QR-codes, that are correctly projected and recognized upon strain gating while remaining cryptic for as-produced devices. The light pattern of micro-QR-codes can also be projected by two coupled magic windows, with one of them acting as the decryption key. Such novel, freeform elements with 3D shape and tailored functionalities is relevant for applications in illumination design, smart labels, anti-counterfeiting systems, and cryptographic communication.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司