亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research considers the ranking and selection with input uncertainty. The objective is to maximize the posterior probability of correctly selecting the best alternative under a fixed simulation budget, where each alternative is measured by its worst-case performance. We formulate the dynamic simulation budget allocation decision problem as a stochastic control problem under a Bayesian framework. Following the approximate dynamic programming theory, we derive a one-step-ahead dynamic optimal budget allocation policy and prove that this policy achieves consistency and asymptotic optimality. Numerical experiments demonstrate that the proposed procedure can significantly improve performance.

相關內容

In this paper we report our new finding on the linear sampling and factorization methods: in addition to shape identification, the linear sampling and factorization methods have capability in parameter identification. Our demonstration is for shape/parameter identification associated with a restricted Fourier integral operator which arises from the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. Within the framework of linear sampling method, we develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. Both the shape and parameter identification theories are general, since the theories allow any general regularization scheme such as the Tikhonov or the singular value cut off regularization. We further propose a prolate-Galerkin formulation of the linear sampling method for implementation and provide numerical experiments to demonstrate how the linear sampling method is capable of reconstructing both the shape and the parameter.

In this paper, we present a stochastic gradient algorithm for minimizing a smooth objective function that is an expectation over noisy cost samples, and only the latter are observed for any given parameter. Our algorithm employs a gradient estimation scheme with random perturbations, which are formed using the truncated Cauchy distribution from the delta sphere. We analyze the bias and variance of the proposed gradient estimator. Our algorithm is found to be particularly useful in the case when the objective function is non-convex, and the parameter dimension is high. From an asymptotic convergence analysis, we establish that our algorithm converges almost surely to the set of stationary points of the objective function and obtains the asymptotic convergence rate. We also show that our algorithm avoids unstable equilibria, implying convergence to local minima. Further, we perform a non-asymptotic convergence analysis of our algorithm. In particular, we establish here a non-asymptotic bound for finding an epsilon-stationary point of the non-convex objective function. Finally, we demonstrate numerically through simulations that the performance of our algorithm outperforms GSF, SPSA, and RDSA by a significant margin over a few non-convex settings and further validate its performance over convex (noisy) objectives.

The stochastic dynamic matching problem has recently drawn attention in the stochastic-modeling community due to its numerous applications, ranging from supply-chain management to kidney exchange programs. In this paper, we consider a matching problem in which items of different classes arrive according to independent Poisson processes. Unmatched items are stored in a queue, and compatibility constraints are described by a simple graph on the classes, so that two items can be matched if their classes are neighbors in the graph. We analyze the efficiency of matching policies, not only in terms of system stability, but also in terms of matching rates between different classes. Our results rely on the observation that, under any stable policy, the matching rates satisfy a conservation equation that equates the arrival and departure rates of each item class. Our main contributions are threefold. We first introduce a mapping between the dimension of the solution set of this conservation equation, the structure of the compatibility graph, and the existence of a stable policy. In particular, this allows us to derive a necessary and sufficient stability condition that is verifiable in polynomial time. Secondly, we describe the convex polytope of non-negative solutions of the conservation equation. When this polytope is reduced to a single point, we give a closed-form expression of the solution; in general, we characterize the vertices of this polytope using again the graph structure. Lastly, we show that greedy policies cannot, in general, achieve every point in the polytope. In contrast, non-greedy policies can reach any point of the interior of this polytope, and we give a condition for these policies to also reach the boundary of the polytope.

Semi-supervised learning by self-training heavily relies on pseudo-label selection (PLS). The selection often depends on the initial model fit on labeled data. Early overfitting might thus be propagated to the final model by selecting instances with overconfident but erroneous predictions, often referred to as confirmation bias. This paper introduces BPLS, a Bayesian framework for PLS that aims to mitigate this issue. At its core lies a criterion for selecting instances to label: an analytical approximation of the posterior predictive of pseudo-samples. We derive this selection criterion by proving Bayes optimality of the posterior predictive of pseudo-samples. We further overcome computational hurdles by approximating the criterion analytically. Its relation to the marginal likelihood allows us to come up with an approximation based on Laplace's method and the Gaussian integral. We empirically assess BPLS for parametric generalized linear and non-parametric generalized additive models on simulated and real-world data. When faced with high-dimensional data prone to overfitting, BPLS outperforms traditional PLS methods.

Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions is studied. Previous known results show that for any $N$-dimensional subspace of the space of continuous functions it is sufficient to use $e^{CN}$ sample points for an accurate upper bound for the uniform norm by the discrete norm and that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the uniform norm. In this paper we focus on two types of results, which allow us to obtain good discretization of the uniform norm with polynomial in $N$ number of points. In the first way we weaken the discretization inequality by allowing a bound of the uniform norm by the discrete norm multiplied by an extra factor, which may depend on $N$. In the second way we impose restrictions on the finite dimensional subspace under consideration. In particular, we prove a general result, which connects the upper bound on the number of sampling points in the discretization theorem for the uniform norm with the best $m$-term bilinear approximation of the Dirichlet kernel associated with the given subspace.

This paper is concerned with a finite-horizon inverse control problem, which has the goal of inferring, from observations, the possibly non-convex and non-stationary cost driving the actions of an agent. In this context, we present a result that enables cost estimation by solving an optimization problem that is convex even when the agent cost is not and when the underlying dynamics is nonlinear, non-stationary and stochastic. To obtain this result, we also study a finite-horizon forward control problem that has randomized policies as decision variables. For this problem, we give an explicit expression for the optimal solution. Moreover, we turn our findings into algorithmic procedures and we show the effectiveness of our approach via both in-silico and experimental validations with real hardware. All the experiments confirm the effectiveness of our approach.

We study the problem of learning with selectively labeled data, which arises when outcomes are only partially labeled due to historical decision-making. The labeled data distribution may substantially differ from the full population, especially when the historical decisions and the target outcome can be simultaneously affected by some unobserved factors. Consequently, learning with only the labeled data may lead to severely biased results when deployed to the full population. Our paper tackles this challenge by exploiting the fact that in many applications the historical decisions were made by a set of heterogeneous decision-makers. In particular, we analyze this setup in a principled instrumental variable (IV) framework. We establish conditions for the full-population risk of any given prediction rule to be point-identified from the observed data and provide sharp risk bounds when the point identification fails. We further propose a weighted learning approach that learns prediction rules robust to the label selection bias in both identification settings. Finally, we apply our proposed approach to a semi-synthetic financial dataset and demonstrate its superior performance in the presence of selection bias.

We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes -- which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by $\mathcal{O}(\sqrt{T})$. A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.

In this paper, we focus on non-conservative obstacle avoidance between robots with control affine dynamics with strictly convex and polytopic shapes. The core challenge for this obstacle avoidance problem is that the minimum distance between strictly convex regions or polytopes is generally implicit and non-smooth, such that distance constraints cannot be enforced directly in the optimization problem. To handle this challenge, we employ non-smooth control barrier functions to reformulate the avoidance problem in the dual space, with the positivity of the minimum distance between robots equivalently expressed using a quadratic program. Our approach is proven to guarantee system safety. We theoretically analyze the smoothness properties of the minimum distance quadratic program and its KKT conditions. We validate our approach by demonstrating computationally-efficient obstacle avoidance for multi-agent robotic systems with strictly convex and polytopic shapes. To our best knowledge, this is the first time a real-time QP problem can be formulated for general non-conservative avoidance between strictly convex shapes and polytopes.

This paper investigates the best arm identification (BAI) problem in stochastic multi-armed bandits in the fixed confidence setting. The general class of the exponential family of bandits is considered. The existing algorithms for the exponential family of bandits face computational challenges. To mitigate these challenges, the BAI problem is viewed and analyzed as a sequential composite hypothesis testing task, and a framework is proposed that adopts the likelihood ratio-based tests known to be effective for sequential testing. Based on this test statistic, a BAI algorithm is designed that leverages the canonical sequential probability ratio tests for arm selection and is amenable to tractable analysis for the exponential family of bandits. This algorithm has two key features: (1) its sample complexity is asymptotically optimal, and (2) it is guaranteed to be $\delta-$PAC. Existing efficient approaches focus on the Gaussian setting and require Thompson sampling for the arm deemed the best and the challenger arm. Additionally, this paper analytically quantifies the computational expense of identifying the challenger in an existing approach. Finally, numerical experiments are provided to support the analysis.

北京阿比特科技有限公司