亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-lingual entity alignment is the task of finding the same semantic entities from different language knowledge graphs. In this paper, we propose a simple and novel unsupervised method for cross-language entity alignment. We utilize the deep learning multi-language encoder combined with a machine translator to encode knowledge graph text, which reduces the reliance on label data. Unlike traditional methods that only emphasize global or local alignment, our method simultaneously considers both alignment strategies. We first view the alignment task as a bipartite matching problem and then adopt the re-exchanging idea to accomplish alignment. Compared with the traditional bipartite matching algorithm that only gives one optimal solution, our algorithm generates ranked matching results which enabled many potentials downstream tasks. Additionally, our method can adapt two different types of optimization (minimal and maximal) in the bipartite matching process, which provides more flexibility. Our evaluation shows, we each scored 0.966, 0.990, and 0.996 Hits@1 rates on the DBP15K dataset in Chinese, Japanese, and French to English alignment tasks. We outperformed the state-of-the-art method in unsupervised and semi-supervised categories. Compared with the state-of-the-art supervised method, our method outperforms 2.6% and 0.4% in Ja-En and Fr-En alignment tasks while marginally lower by 0.2% in the Zh-En alignment task.

相關內容

Neural-symbolic methods have shown their effectiveness in enhancing the reasoning abilities of large language models (LLMs). However, existing methods primarily rely on mapping natural languages to more syntactically complete formal languages (e.g., Python and SQL). Those approaches necessitate that reasoning tasks be convertible into programs, which cater more to the computer execution mindset and deviate from human reasoning habits. To expand the real-world applicability and flexibility of symbolic methods, we propose Meta-Reasoning from the scope of linguistics itself. This method empowers LLMs to deconstruct questions and effectively capture more generalized knowledge autonomously. We find that Meta-Reasoning achieves improved in-context learning efficiency, reasoning accuracy, and output stability in six arithmetic and symbolic reasoning tasks. In particular, when applied to symbolic reasoning tasks such as Tracking Shuffled Objects, GPT-3 (text-davinci-002) surpasses the few-shot Chain-of-Thought prompting approach (+37.7%), with 99% accuracy after a single demonstration of Meta-Reasoning.

Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.

This paper introduces the XOR-OR-AND normal form (XNF) for logical formulas. It is a generalization of the well-known Conjunctive Normal Form (CNF) where literals are replaced by XORs of literals. As a first theoretic result, we show that every formula is equisatisfiable to a formula in 2-XNF, i.e., a formula in XNF where each disjunction involves at most two XORs of literals. Subsequently, we present an algorithm which converts Boolean polynomials efficiently from their Algebraic Normal Form (ANF) to formulas in 2-XNF. Experiments with the cipher ASCON-128 show that cryptographic problems, which by design are based strongly on XOR-operations, can be represented using far fewer variables and clauses in 2-XNF than in CNF. In order to take advantage of this compact representation, new SAT solvers based on input formulas in 2-XNF need to be designed. By taking inspiration from graph-based 2-CNF SAT solving, we devise a new DPLL-based SAT solver for formulas in 2-XNF. Among others, we present advanced pre- and in-processing techniques. Finally, we give timings for random 2-XNF instances and instances related to key recovery attacks on round reduced ASCON-128, where our solver outperforms state-of-the-art alternative solving approaches.

Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner. This work considers a fundamental problem in multi-agent collaboration: consensus seeking. When multiple agents work together, we are interested in how they can reach a consensus through inter-agent negotiation. To that end, this work studies a consensus-seeking task where the state of each agent is a numerical value and they negotiate with each other to reach a consensus value. It is revealed that when not explicitly directed on which strategy should be adopted, the LLM-driven agents primarily use the average strategy for consensus seeking although they may occasionally use some other strategies. Moreover, this work analyzes the impact of the agent number, agent personality, and network topology on the negotiation process. The findings reported in this work can potentially lay the foundations for understanding the behaviors of LLM-driven multi-agent systems for solving more complex tasks. Furthermore, LLM-driven consensus seeking is applied to a multi-robot aggregation task. This application demonstrates the potential of LLM-driven agents to achieve zero-shot autonomous planning for multi-robot collaboration tasks. Project website: westlakeintelligentrobotics.github.io/ConsensusLLM/.

Semantic communication has emerged as a new deep learning-based communication paradigm that drives the research of end-to-end data transmission in tasks like image classification, and image reconstruction. However, the security problem caused by semantic attacks has not been well explored, resulting in vulnerabilities within semantic communication systems exposed to potential semantic perturbations. In this paper, we propose a secure semantic communication system, DiffuSeC, which leverages the diffusion model and deep reinforcement learning (DRL) to address this issue. With the diffusing module in the sender end and the asymmetric denoising module in the receiver end, the DiffuSeC mitigates the perturbations added by semantic attacks, including data source attacks and channel attacks. To further improve the robustness under unstable channel conditions caused by semantic attacks, we developed a DRL-based channel-adaptive diffusion step selection scheme to achieve stable performance under fluctuating environments. A timestep synchronization scheme is designed for diffusion timestep coordination between the two ends. Simulation results demonstrate that the proposed DiffuSeC shows higher robust accuracy than previous works under a wide range of channel conditions, and can quickly adjust the model state according to signal-to-noise ratios (SNRs) in unstable environments.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司