亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic depression detection on Twitter can help individuals privately and conveniently understand their mental health status in the early stages before seeing mental health professionals. Most existing black-box-like deep learning methods for depression detection largely focused on improving classification performance. However, explaining model decisions is imperative in health research because decision-making can often be high-stakes and life-and-death. Reliable automatic diagnosis of mental health problems including depression should be supported by credible explanations justifying models' predictions. In this work, we propose a novel explainable model for depression detection on Twitter. It comprises a novel encoder combining hierarchical attention mechanisms and feed-forward neural networks. To support psycholinguistic studies, our model leverages metaphorical concept mappings as input. Thus, it not only detects depressed individuals, but also identifies features of such users' tweets and associated metaphor concept mappings.

相關內容

Transformers have recently been utilized to perform object detection and tracking in the context of autonomous driving. One unique characteristic of these models is that attention weights are computed in each forward pass, giving insights into the model's interior, in particular, which part of the input data it deemed interesting for the given task. Such an attention matrix with the input grid is available for each detected (or tracked) object in every transformer decoder layer. In this work, we investigate the distribution of these attention weights: How do they change through the decoder layers and through the lifetime of a track? Can they be used to infer additional information about an object, such as a detection uncertainty? Especially in unstructured environments, or environments that were not common during training, a reliable measure of detection uncertainty is crucial to decide whether the system can still be trusted or not.

Few-Shot Object Detection (FSOD) methods are mainly designed and evaluated on natural image datasets such as Pascal VOC and MS COCO. However, it is not clear whether the best methods for natural images are also the best for aerial images. Furthermore, direct comparison of performance between FSOD methods is difficult due to the wide variety of detection frameworks and training strategies. Therefore, we propose a benchmarking framework that provides a flexible environment to implement and compare attention-based FSOD methods. The proposed framework focuses on attention mechanisms and is divided into three modules: spatial alignment, global attention, and fusion layer. To remain competitive with existing methods, which often leverage complex training, we propose new augmentation techniques designed for object detection. Using this framework, several FSOD methods are reimplemented and compared. This comparison highlights two distinct performance regimes on aerial and natural images: FSOD performs worse on aerial images. Our experiments suggest that small objects, which are harder to detect in the few-shot setting, account for the poor performance. Finally, we develop a novel multiscale alignment method, Cross-Scales Query-Support Alignment (XQSA) for FSOD, to improve the detection of small objects. XQSA outperforms the state-of-the-art significantly on DOTA and DIOR.

Despite the rapid advance of unsupervised anomaly detection, existing methods require to train separate models for different objects. In this work, we present UniAD that accomplishes anomaly detection for multiple classes with a unified framework. Under such a challenging setting, popular reconstruction networks may fall into an "identical shortcut", where both normal and anomalous samples can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we make three improvements. First, we revisit the formulations of fully-connected layer, convolutional layer, as well as attention layer, and confirm the important role of query embedding (i.e., within attention layer) in preventing the network from learning the shortcut. We therefore come up with a layer-wise query decoder to help model the multi-class distribution. Second, we employ a neighbor masked attention module to further avoid the information leak from the input feature to the reconstructed output feature. Third, we propose a feature jittering strategy that urges the model to recover the correct message even with noisy inputs. We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass the state-of-the-art alternatives by a sufficiently large margin. For example, when learning a unified model for 15 categories in MVTec-AD, we surpass the second competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and anomaly localization (from 89.5% to 96.8%). Code is available at //github.com/zhiyuanyou/UniAD.

Traditional deep learning interpretability methods which are suitable for model users cannot explain network behaviors at the global level and are inflexible at providing fine-grained explanations. As a solution, concept-based explanations are gaining attention due to their human intuitiveness and their flexibility to describe both global and local model behaviors. Concepts are groups of similarly meaningful pixels that express a notion, embedded within the network's latent space and have commonly been hand-generated, but have recently been discovered by automated approaches. Unfortunately, the magnitude and diversity of discovered concepts makes it difficult to navigate and make sense of the concept space. Visual analytics can serve a valuable role in bridging these gaps by enabling structured navigation and exploration of the concept space to provide concept-based insights of model behavior to users. To this end, we design, develop, and validate ConceptExplainer, a visual analytics system that enables people to interactively probe and explore the concept space to explain model behavior at the instance/class/global level. The system was developed via iterative prototyping to address a number of design challenges that model users face in interpreting the behavior of deep learning models. Via a rigorous user study, we validate how ConceptExplainer supports these challenges. Likewise, we conduct a series of usage scenarios to demonstrate how the system supports the interactive analysis of model behavior across a variety of tasks and explanation granularities, such as identifying concepts that are important to classification, identifying bias in training data, and understanding how concepts can be shared across diverse and seemingly dissimilar classes.

The lack of wide coverage datasets annotated with everyday metaphorical expressions for languages other than English is striking. This means that most research on supervised metaphor detection has been published only for that language. In order to address this issue, this work presents the first corpus annotated with naturally occurring metaphors in Spanish large enough to develop systems to perform metaphor detection. The presented dataset, CoMeta, includes texts from various domains, namely, news, political discourse, Wikipedia and reviews. In order to label CoMeta, we apply the MIPVU method, the guidelines most commonly used to systematically annotate metaphor on real data. We use our newly created dataset to provide competitive baselines by fine-tuning several multilingual and monolingual state-of-the-art large language models. Furthermore, by leveraging the existing VUAM English data in addition to CoMeta, we present the, to the best of our knowledge, first cross-lingual experiments on supervised metaphor detection. Finally, we perform a detailed error analysis that explores the seemingly high transfer of everyday metaphor across these two languages and datasets.

Financial fraud cases are on the rise even with the current technological advancements. Due to the lack of inter-organization synergy and because of privacy concerns, authentic financial transaction data is rarely available. On the other hand, data-driven technologies like machine learning need authentic data to perform precisely in real-world systems. This study proposes a blockchain and smart contract-based approach to achieve robust Machine Learning (ML) algorithm for e-commerce fraud detection by facilitating inter-organizational collaboration. The proposed method uses blockchain to secure the privacy of the data. Smart contract deployed inside the network fully automates the system. An ML model is incrementally upgraded from collaborative data provided by the organizations connected to the blockchain. To incentivize the organizations, we have introduced an incentive mechanism that is adaptive to the difficulty level in updating a model. The organizations receive incentives based on the difficulty faced in updating the ML model. A mining criterion has been proposed to mine the block efficiently. And finally, the blockchain network istested under different difficulty levels and under different volumes of data to test its efficiency. The model achieved 98.93% testing accuracy and 98.22% Fbeta score (recall-biased f measure) over eight incremental updates. Our experiment shows that both data volume and difficulty level of blockchain impacts the mining time. For difficulty level less than five, mining time and difficulty level has a positive correlation. For difficulty level two and three, less than a second is required to mine a block in our system. Difficulty level five poses much more difficulties to mine the blocks.

We propose a new approach to learn to segment multiple image objects without manual supervision. The method can extract objects form still images, but uses videos for supervision. While prior works have considered motion for segmentation, a key insight is that, while motion can be used to identify objects, not all objects are necessarily in motion: the absence of motion does not imply the absence of objects. Hence, our model learns to predict image regions that are likely to contain motion patterns characteristic of objects moving rigidly. It does not predict specific motion, which cannot be done unambiguously from a still image, but a distribution of possible motions, which includes the possibility that an object does not move at all. We demonstrate the advantage of this approach over its deterministic counterpart and show state-of-the-art unsupervised object segmentation performance on simulated and real-world benchmarks, surpassing methods that use motion even at test time. As our approach is applicable to variety of network architectures that segment the scenes, we also apply it to existing image reconstruction-based models showing drastic improvement. Project page and code: //www.robots.ox.ac.uk/~vgg/research/ppmp .

The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Object tracking is the cornerstone of many visual analytics systems. While considerable progress has been made in this area in recent years, robust, efficient, and accurate tracking in real-world video remains a challenge. In this paper, we present a hybrid tracker that leverages motion information from the compressed video stream and a general-purpose semantic object detector acting on decoded frames to construct a fast and efficient tracking engine suitable for a number of visual analytics applications. The proposed approach is compared with several well-known recent trackers on the OTB tracking dataset. The results indicate advantages of the proposed method in terms of speed and/or accuracy. Another advantage of the proposed method over most existing trackers is its simplicity and deployment efficiency, which stems from the fact that it reuses and re-purposes the resources and information that may already exist in the system for other reasons.

北京阿比特科技有限公司