In this letter, we propose a model parameter identification method via a hyperparameter optimization scheme (MI-HPO). Our method adopts an efficient explore-exploit strategy to identify the parameters of dynamic models in a data-driven optimization manner. We utilize our method for model parameter identification of the AV-21, a full-scaled autonomous race vehicle. We then incorporate the optimized parameters for the design of model-based planning and control systems of our platform. In experiments, MI-HPO exhibits more than 13 times faster convergence than traditional parameter identification methods. Furthermore, the parametric models learned via MI-HPO demonstrate good fitness to the given datasets and show generalization ability in unseen dynamic scenarios. We further conduct extensive field tests to validate our model-based system, demonstrating stable obstacle avoidance and high-speed driving up to 217 km/h at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for our work and videos of the tests are available at //github.com/hynkis/MI-HPO.
We present the Fast Chebyshev Transform (FCT), a fast, randomized algorithm to compute a Chebyshev approximation of functions in high-dimensions from the knowledge of the location of its nonzero Chebyshev coefficients. Rather than sampling a full-resolution Chebyshev grid in each dimension, we randomly sample several grids with varied resolutions and solve a least-squares problem in coefficient space in order to compute a polynomial approximating the function of interest across all grids simultaneously. We theoretically and empirically show that the FCT exhibits quasi-linear scaling and high numerical accuracy on challenging and complex high-dimensional problems. We demonstrate the effectiveness of our approach compared to alternative Chebyshev approximation schemes. In particular, we highlight our algorithm's effectiveness in high dimensions, demonstrating significant speedups over commonly-used alternative techniques.
Reinforcement Learning (RL) allows learning non-trivial robot control laws purely from data. However, many successful applications of RL have relied on ad-hoc regularizations, such as hand-crafted curricula, to regularize the learning performance. In this paper, we pair a recent algorithm for automatically building curricula with RL on massively parallelized simulations to learn a tracking controller for a spherical pendulum on a robotic arm via RL. Through an improved optimization scheme that better respects the non-Euclidean task structure, we allow the method to reliably generate curricula of trajectories to be tracked, resulting in faster and more robust learning compared to an RL baseline that does not exploit this form of structured learning. The learned policy matches the performance of an optimal control baseline on the real system, demonstrating the potential of curriculum RL to jointly learn state estimation and control for non-linear tracking tasks.
In this letter, we introduce deep active learning (AL) for multi-label classification (MLC) problems in remote sensing (RS). In particular, we investigate the effectiveness of several AL query functions for MLC of RS images. Unlike the existing AL query functions (which are defined for single-label classification or semantic segmentation problems), each query function in this paper is based on the evaluation of two criteria: i) multi-label uncertainty; and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the deep neural networks (DNNs) in correctly assigning multi-labels to each image. To assess this criterion, we investigate three strategies: i) learning multi-label loss ordering; ii) measuring temporal discrepancy of multi-label predictions; and iii) measuring magnitude of approximated gradient embeddings. The multi-label diversity criterion is associated to the selection of a set of images that are as diverse as possible to each other that prevents redundancy among them. To assess this criterion, we exploit a clustering based strategy. We combine each of the above-mentioned uncertainty strategies with the clustering based diversity strategy, resulting in three different query functions. All the considered query functions are introduced for the first time in the framework of MLC problems in RS. Experimental results obtained on two benchmark archives show that these query functions result in the selection of a highly informative set of samples at each iteration of the AL process.
Bilinear based models are powerful and widely used approaches for Knowledge Graphs Completion (KGC). Although bilinear based models have achieved significant advances, these studies mainly concentrate on posterior properties (based on evidence, e.g. symmetry pattern) while neglecting the prior properties. In this paper, we find a prior property named "the law of identity" that cannot be captured by bilinear based models, which hinders them from comprehensively modeling the characteristics of KGs. To address this issue, we introduce a solution called Unit Ball Bilinear Model (UniBi). This model not only achieves theoretical superiority but also offers enhanced interpretability and performance by minimizing ineffective learning through minimal constraints. Experiments demonstrate that UniBi models the prior property and verify its interpretability and performance.
LEGO is a well-known platform for prototyping pixelized objects. However, robotic LEGO prototyping (i.e. manipulating LEGO bricks) is challenging due to the tight connections and accuracy requirement. This paper investigates safe and efficient robotic LEGO manipulation. In particular, this paper reduces the complexity of the manipulation by hardware-software co-design. An end-of-arm tool (EOAT) is designed, which reduces the problem dimension and allows large industrial robots to easily manipulate LEGO bricks. In addition, this paper uses evolution strategy to safely optimize the robot motion for LEGO manipulation. Experiments demonstrate that the EOAT performs reliably in manipulating LEGO bricks and the learning framework can effectively and safely improve the manipulation performance to a 100% success rate. The co-design is deployed to multiple robots (i.e. FANUC LR-mate 200id/7L and Yaskawa GP4) to demonstrate its generalizability and transferability. In the end, we show that the proposed solution enables sustainable robotic LEGO prototyping, in which the robot can repeatedly assemble and disassemble different prototypes.
In this work, we investigate two popular end-to-end automatic speech recognition (ASR) models, namely Connectionist Temporal Classification (CTC) and RNN-Transducer (RNN-T), for offline recognition of voice search queries, with up to 2B model parameters. The encoders of our models use the neural architecture of Google's universal speech model (USM), with additional funnel pooling layers to significantly reduce the frame rate and speed up training and inference. We perform extensive studies on vocabulary size, time reduction strategy, and its generalization performance on long-form test sets. Despite the speculation that, as the model size increases, CTC can be as good as RNN-T which builds label dependency into the prediction, we observe that a 900M RNN-T clearly outperforms a 1.8B CTC and is more tolerant to severe time reduction, although the WER gap can be largely removed by LM shallow fusion.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.