亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games are value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.

相關內容

The reinforcement learning (RL) problem is rife with sources of non-stationarity, making it a notoriously difficult problem domain for the application of neural networks. We identify a mechanism by which non-stationary prediction targets can prevent learning progress in deep RL agents: \textit{capacity loss}, whereby networks trained on a sequence of target values lose their ability to quickly update their predictions over time. We demonstrate that capacity loss occurs in a range of RL agents and environments, and is particularly damaging to performance in sparse-reward tasks. We then present a simple regularizer, Initial Feature Regularization (InFeR), that mitigates this phenomenon by regressing a subspace of features towards its value at initialization, leading to significant performance improvements in sparse-reward environments such as Montezuma's Revenge. We conclude that preventing capacity loss is crucial to enable agents to maximally benefit from the learning signals they obtain throughout the entire training trajectory.

In Statistical Relational Artificial Intelligence, a branch of AI and machine learning which combines the logical and statistical schools of AI, one uses the concept {\em para\-metrized probabilistic graphical model (PPGM)} to model (conditional) dependencies between random variables and to make probabilistic inferences about events on a space of "possible worlds". The set of possible worlds with underlying domain $D$ (a set of objects) can be represented by the set $\mathbf{W}_D$ of all first-order structures (for a suitable signature) with domain $D$. Using a formal logic we can describe events on $\mathbf{W}_D$. By combining a logic and a PPGM we can also define a probability distribution $\mathbb{P}_D$ on $\mathbf{W}_D$ and use it to compute the probability of an event. We consider a logic, denoted $PLA$, with truth values in the unit interval, which uses aggregation functions, such as arithmetic mean, geometric mean, maximum and minimum instead of quantifiers. However we face the problem of computational efficiency and this problem is an obstacle to the wider use of methods from Statistical Relational AI in practical applications. We address this problem by proving that the described probability will, under certain assumptions on the PPGM and the sentence $\varphi$, converge as the size of $D$ tends to infinity. The convergence result is obtained by showing that every formula $\varphi(x_1, \ldots, x_k)$ which contains only "admissible" aggregation functions (e.g. arithmetic and geometric mean, max and min) is asymptotically equivalent to a formula $\psi(x_1, \ldots, x_k)$ without aggregation functions.

We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, both players' actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL based on the principle "Optimism-in-Face-of-Uncertainty". Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally efficient. Specifically, we show that Nash-UCRL can provably achieve an $\tilde{O}(dH\sqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To assess the optimality of our algorithm, we also prove an $\tilde{\Omega}( dH\sqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.

The simulation of multi-body systems with frictional contacts is a fundamental tool for many fields, such as robotics, computer graphics, and mechanics. Hard frictional contacts are particularly troublesome to simulate because they make the differential equations stiff, calling for computationally demanding implicit integration schemes. We suggest to tackle this issue by using exponential integrators, a long-standing class of integration schemes (first introduced in the 60's) that in recent years has enjoyed a resurgence of interest. We show that this scheme can be easily applied to multi-body systems subject to stiff viscoelastic contacts, producing accurate results at lower computational cost than \changed{classic explicit or implicit schemes}. In our tests with quadruped and biped robots, our method demonstrated stable behaviors with large time steps (10 ms) and stiff contacts ($10^5$ N/m). Its excellent properties, especially for fast and coarse simulations, make it a valuable candidate for many applications in robotics, such as simulation, Model Predictive Control, Reinforcement Learning, and controller design.

The quest to understand consciousness, once the purview of philosophers and theologians, is now actively pursued by scientists of many stripes. We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. In the spirit of Alan Turing's simple yet powerful definition of a computer, the Turing Machine (TM), and perspective of computational complexity theory, we formalize a modified version of the Global Workspace Theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeaux and others. We are not looking for a complex model of the brain nor of cognition, but for a simple computational model of (the admittedly complex concept of) consciousness. We do this by defining the Conscious Turing Machine (CTM), also called a conscious AI, and then we define consciousness and related notions in the CTM. While these are only mathematical (TCS) definitions, we suggest why the CTM has the feeling of consciousness. The TCS perspective provides a simple formal framework to employ tools from computational complexity theory and machine learning to help us understand consciousness and related concepts. Previously we explored high level explanations for the feelings of pain and pleasure in the CTM. Here we consider three examples related to vision (blindsight, inattentional blindness, and change blindness), followed by discussions of dreams, free will, and altered states of consciousness.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

北京阿比特科技有限公司