亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Healthcare Internet-of-Things (H-IoT), commonly known as Digital Healthcare, is a data-driven infrastructure that highly relies on smart sensing devices (i.e., blood pressure monitors, temperature sensors, etc.) for faster response time, treatments, and diagnosis. However, with the evolving cyber threat landscape, IoT devices have become more vulnerable to the broader risk surface (e.g., risks associated with generative AI, 5G-IoT, etc.), which, if exploited, may lead to data breaches, unauthorized access, and lack of command and control and potential harm. This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices. The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application. Detecting and responding to anomalies involves various cyber-attacks and protocols such as Wi-Fi 6, Narrowband Internet of Things (NB-IoT), Bluetooth, ZigBee, LoRa, and 5G New Radio (5G NR). A robust authentication mechanism based on machine learning and deep learning techniques is required to protect and mitigate H-IoT devices from increasing cybersecurity vulnerabilities. Hence, in this review paper, security and privacy challenges and risk mitigation strategies for building resilience in H-IoT are explored and reported.

相關內容

機(ji)(ji)器(qi)學(xue)習(Machine Learning)是一(yi)個研(yan)究計算學(xue)習方(fang)(fang)法的(de)(de)(de)(de)(de)國際論(lun)壇。該雜志(zhi)發表(biao)文(wen)章,報(bao)告廣泛的(de)(de)(de)(de)(de)學(xue)習方(fang)(fang)法應用于(yu)各種學(xue)習問(wen)題的(de)(de)(de)(de)(de)實(shi)質性(xing)結果(guo)。該雜志(zhi)的(de)(de)(de)(de)(de)特色論(lun)文(wen)描述(shu)研(yan)究的(de)(de)(de)(de)(de)問(wen)題和(he)方(fang)(fang)法,應用研(yan)究和(he)研(yan)究方(fang)(fang)法的(de)(de)(de)(de)(de)問(wen)題。有關學(xue)習問(wen)題或方(fang)(fang)法的(de)(de)(de)(de)(de)論(lun)文(wen)通過實(shi)證(zheng)研(yan)究、理論(lun)分析或與心理現象的(de)(de)(de)(de)(de)比較提供了(le)(le)堅實(shi)的(de)(de)(de)(de)(de)支持。應用論(lun)文(wen)展示(shi)了(le)(le)如何應用學(xue)習方(fang)(fang)法來解決重要的(de)(de)(de)(de)(de)應用問(wen)題。研(yan)究方(fang)(fang)法論(lun)文(wen)改進了(le)(le)機(ji)(ji)器(qi)學(xue)習的(de)(de)(de)(de)(de)研(yan)究方(fang)(fang)法。所有的(de)(de)(de)(de)(de)論(lun)文(wen)都以其他研(yan)究人員(yuan)可以驗證(zheng)或復制(zhi)的(de)(de)(de)(de)(de)方(fang)(fang)式描述(shu)了(le)(le)支持證(zheng)據。論(lun)文(wen)還(huan)詳細(xi)說明了(le)(le)學(xue)習的(de)(de)(de)(de)(de)組成(cheng)部分,并(bing)討論(lun)了(le)(le)關于(yu)知識表(biao)示(shi)和(he)性(xing)能任務的(de)(de)(de)(de)(de)假設。 官網(wang)地址:

Recently, big artificial intelligence models (BAIMs) represented by chatGPT have brought an incredible revolution. With the pre-trained BAIMs in certain fields, numerous downstream tasks can be accomplished with only few-shot or even zero-shot learning and exhibit state-of-the-art performances. As widely envisioned, the big AI models are to rapidly penetrate into major intelligent services and applications, and are able to run at low unit cost and high flexibility. In 6G wireless networks, to fully enable intelligent communication, sensing and computing, apart from providing other intelligent wireless services and applications, it is of vital importance to design and deploy certain wireless BAIMs (wBAIMs). However, there still lacks investigation on architecture design and system evaluation for wBAIM. In this paper, we provide a comprehensive discussion as well as some in-depth prospects on the demand, design and deployment aspects of the wBAIM. We opine that wBAIM will be a recipe of the 6G wireless networks to build high-efficient, sustainable, versatile, and extensible wireless intelligence for numerous promising visions. Then, we provide the core characteristics, principles, and pilot studies to guide the design of wBAIMs, and discuss the key aspects of developing wBAIMs through identifying the differences between the existing BAIMs and the emerging wBAIMs. Finally, related research directions and potential solutions are outlined.

Partially Observable Markov Decision Processes (POMDPs) are a powerful framework for planning under uncertainty. They allow to model state uncertainty as a belief probability distribution. Approximate solvers based on Monte Carlo sampling show great success to relax the computational demand and perform online planning. However, scaling to complex realistic domains with many actions and long planning horizons is still a major challenge, and a key point to achieve good performance is guiding the action-selection process with domain-dependent policy heuristics which are tailored for the specific application domain. We propose to learn high-quality heuristics from POMDP traces of executions generated by any solver. We convert the belief-action pairs to a logical semantics, and exploit data- and time-efficient Inductive Logic Programming (ILP) to generate interpretable belief-based policy specifications, which are then used as online heuristics. We evaluate thoroughly our methodology on two notoriously challenging POMDP problems, involving large action spaces and long planning horizons, namely, rocksample and pocman. Considering different state-of-the-art online POMDP solvers, including POMCP, DESPOT and AdaOPS, we show that learned heuristics expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specific heuristics within lower computational time. Moreover, they well generalize to more challenging scenarios not experienced in the training phase (e.g., increasing rocks and grid size in rocksample, incrementing the size of the map and the aggressivity of ghosts in pocman).

Concerning classical computational models able to express all the Primitive Recursive Functions (PRF), there are interesting results regarding limits on their algorithmic expressiveness or, equivalently, efficiency, namely the ability to express algorithms with minimal computational cost. By introducing the reversible programming model Forest, at our knowledge, we provide a first study of analogous properties, adapted to the context of reversible computational models that can represent all the functions in PRF. Firstly, we show that Forest extends Matos' linear reversible computational model MSRL, the very extension being a guaranteed terminating iteration that can be halted by means of logical predicates. The consequence is that Forest is PRF complete, because MSRL is. Secondly, we show that Forest is strictly algorithmically more expressive than MSRL: it can encode a reversible algorithm for the minimum between two integers in optimal time, while MSRL cannot.

Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning to achieve multiple goals in an environment purely from offline datasets using sparse reward functions. Offline GCRL is pivotal for developing generalist agents capable of leveraging pre-existing datasets to learn diverse and reusable skills without hand-engineering reward functions. However, contemporary approaches to GCRL based on supervised learning and contrastive learning are often suboptimal in the offline setting. An alternative perspective on GCRL optimizes for occupancy matching, but necessitates learning a discriminator, which subsequently serves as a pseudo-reward for downstream RL. Inaccuracies in the learned discriminator can cascade, negatively influencing the resulting policy. We present a novel approach to GCRL under a new lens of mixture-distribution matching, leading to our discriminator-free method: SMORe. The key insight is combining the occupancy matching perspective of GCRL with a convex dual formulation to derive a learning objective that can better leverage suboptimal offline data. SMORe learns scores or unnormalized densities representing the importance of taking an action at a state for reaching a particular goal. SMORe is principled and our extensive experiments on the fully offline GCRL benchmark composed of robot manipulation and locomotion tasks, including high-dimensional observations, show that SMORe can outperform state-of-the-art baselines by a significant margin.

Parameter-efficient finetuning (PEFT) is a widely used technique to adapt large language models for different tasks. Service providers typically create separate systems for users to perform PEFT model finetuning and inference tasks. This is because existing systems cannot handle workloads that include a mix of inference and PEFT finetuning requests. As a result, shared GPU resources are underutilized, leading to inefficiencies. To address this problem, we present FlexLLM, the first system that can serve inference and parameter-efficient finetuning requests in the same iteration. Our system leverages the complementary nature of these two tasks and utilizes shared GPU resources to run them jointly, using a method called co-serving. To achieve this, FlexLLM introduces a novel token-level finetuning mechanism, which breaks down the finetuning computation of a sequence into smaller token-level computations and uses dependent parallelization and graph pruning, two static compilation optimizations, to minimize the memory overhead and latency for co-serving. Compared to existing systems, FlexLLM's co-serving approach reduces the activation GPU memory overhead by up to 8x, and the end-to-end GPU memory requirement of finetuning by up to 36% while maintaining a low inference latency and improving finetuning throughput. For example, under a heavy inference workload, FlexLLM can still preserve more than 80% of the peak finetuning throughput, whereas existing systems cannot make any progress with finetuning. The source code of FlexLLM is publicly available at //github.com/flexflow/FlexFlow.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司