亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. This method uses a finite element (FE) method to approximate the stresses and forces on a structural mesh and a finite difference (FD) method to approximate the momentum of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. Force spreading and velocity interpolation both require projecting data onto the finite element space. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve.

相關內容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移動Ad hoc和傳感器系統IEEE國際會議。 Publisher:IEEE。 SIT:

We give tight statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise. In particular, suppose that all labels are corrupted with probability at most $\eta$. We show that for arbitrary $\eta \in [0,1/2]$ every SQ algorithm achieving misclassification error better than $\eta$ requires queries of superpolynomial accuracy or at least a superpolynomial number of queries. Further, this continues to hold even if the information-theoretically optimal error $\mathrm{OPT}$ is as small as $\exp\left(-\log^c(d)\right)$, where $d$ is the dimension and $0 < c < 1$ is an arbitrary absolute constant, and an overwhelming fraction of examples are noiseless. Our lower bound matches known polynomial time algorithms, which are also implementable in the SQ framework. Previously, such lower bounds only ruled out algorithms achieving error $\mathrm{OPT} + \epsilon$ or error better than $\Omega(\eta)$ or, if $\eta$ is close to $1/2$, error $\eta - o_\eta(1)$, where the term $o_\eta(1)$ is constant in $d$ but going to 0 for $\eta$ approaching $1/2$. As a consequence, we also show that achieving misclassification error better than $1/2$ in the $(A,\alpha)$-Tsybakov model is SQ-hard for $A$ constant and $\alpha$ bounded away from 1.

Physically-inspired latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems. They carry the structure of differential equations and the flexibility of Gaussian processes, yielding interpretable parameters and dynamics-imposed latent functions. However, the existing inference techniques associated with these models rely on the exact computation of posterior kernel terms which are seldom available in analytical form. Most applications relevant to practitioners, such as Hill equations or diffusion equations, are hence intractable. In this paper, we overcome these computational problems by proposing a variational solution to a general class of non-linear and parabolic partial differential equation latent force models. Further, we show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation. We demonstrate the efficacy and flexibility of our framework by achieving competitive performance on several tasks where the kernels are of varying degrees of tractability.

We demonstrate the effectiveness of an adaptive explicit Euler method for the approximate solution of the Cox-Ingersoll-Ross model. This relies on a class of path-bounded timestepping strategies which work by reducing the stepsize as solutions approach a neighbourhood of zero. The method is hybrid in the sense that a convergent backstop method is invoked if the timestep becomes too small, or to prevent solutions from overshooting zero and becoming negative. Under parameter constraints that imply Feller's condition, we prove that such a scheme is strongly convergent, of order at least 1/2. Control of the strong error is important for multi-level Monte Carlo techniques. Under Feller's condition we also prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. Numerically, we compare this adaptive method to fixed step implicit and explicit schemes, and a novel semi-implicit adaptive variant. We observe that the adaptive approach leads to methods that are competitive in a domain that extends beyond Feller's condition, indicating suitability for the modelling of stochastic volatility in Heston-type asset models.

We consider fully discrete embedded finite element approximations for a shallow water hyperbolic problem and its reduced-order model. Our approach is based on a fixed background mesh and an embedded reduced basis. The Shifted Boundary Method for spatial discretization is combined with an explicit predictor/multi-corrector time integration to integrate in time the numerical solutions to the shallow water equations, both for the full and reduced-order model. In order to improve the approximation of the solution manifold also for geometries that are untested during the offline stage, the snapshots have been pre-processed by means of an interpolation procedure that precedes the reduced basis computation. The methodology is tested on geometrically parametrized shapes with varying size and position.

We develop a stable finite difference method for the elastic wave equation in bounded media, where the material properties can be discontinuous at curved interfaces. The governing equation is discretized in second order form by a fourth or sixth order accurate summation-by-parts operator. The mesh size is determined by the velocity structure of the material, resulting in nonconforming grid interfaces with hanging nodes. We use order-preserving interpolation and the ghost point technique to couple adjacent mesh blocks in an energy-conserving manner, which is supported by a fully discrete stability analysis. In our previous work for the wave equation, two pairs of order-preserving interpolation operators are needed when imposing the interface conditions weakly by a penalty technique. Here, we only use one pair in the ghost point method. In numerical experiments, we demonstrate that the convergence rate is optimal, and is the same as when a globally uniform mesh is used in a single domain. In addition, with a predictor-corrector time integration method, we obtain time stepping stability with stepsize almost the same as given by the usual Courant-Friedrichs-Lewy condition.

We study orbit-finite systems of linear equations, in the setting of sets with atoms. Our principal contribution is a decision procedure for solvability of such systems. The procedure works for every field (and even commutative ring) under mild effectiveness assumptions, and reduces a given orbit-finite system to a number of finite ones: exponentially many in general, but polynomially many when atom dimension of input systems is fixed. Towards obtaining the procedure we push further the theory of vector spaces generated by orbit-finite sets, and show that each such vector space admits an orbit-finite basis. This fundamental property is a key tool in our development, but should be also of wider interest.

Consider a set $P$ of $n$ points in $\mathbb{R}^d$. In the discrete median line segment problem, the objective is to find a line segment bounded by a pair of points in $P$ such that the sum of the Euclidean distances from $P$ to the line segment is minimized. In the continuous median line segment problem, a real number $\ell>0$ is given, and the goal is to locate a line segment of length $\ell$ in $\mathbb{R}^d$ such that the sum of the Euclidean distances between $P$ and the line segment is minimized. To begin with, we show how to compute $(1+\epsilon\Delta)$- and $(1+\epsilon)$-approximations to a discrete median line segment in time $O(n\epsilon^{-2d}\log n)$ and $O(n^2\epsilon^{-d})$, respectively, where $\Delta$ is the spread of line segments spanned by pairs of points. While developing our algorithms, by using the principle of pair decomposition, we derive new data structures that allow us to quickly approximate the sum of the distances from a set of points to a given line segment or point. To our knowledge, our utilization of pair decompositions for solving minsum facility location problems is the first of its kind -- it is versatile and easily implementable. Furthermore, we prove that it is impossible to construct a continuous median line segment for $n\geq3$ non-collinear points in the plane by using only ruler and compass. In view of this, we present an $O(n^d\epsilon^{-d})$-time algorithm for approximating a continuous median line segment in $\mathbb{R}^d$ within a factor of $1+\epsilon$. The algorithm is based upon generalizing the point-segment pair decomposition from the discrete to the continuous domain. Last but not least, we give an $(1+\epsilon)$-approximation algorithm, whose time complexity is sub-quadratic in $n$, for solving the constrained median line segment problem in $\mathbb{R}^2$ where an endpoint or the slope of the median line segment is given at input.

Like many other biological processes, calcium dynamics in neurons containing an endoplasmic reticulum are governed by diffusion-reaction equations on interface-separated domains. Interface conditions are typically described by systems of ordinary differential equations that provide fluxes across the interfaces. Using the calcium model as an example of this class of ODE-flux boundary interface problems, we prove the existence, uniqueness and boundedness of the solution by applying comparison theorem, fundamental solution of the parabolic operator and a strategy used in Picard's existence theorem. Then we propose and analyze an efficient implicit-explicit finite element scheme which is implicit for the parabolic operator and explicit for the nonlinear terms. We show that the stability does not depend on the spatial mesh size. Also the optimal convergence rate in $H^1$ norm is obtained. Numerical experiments illustrate the theoretical results.

Given input-output pairs of an elliptic partial differential equation (PDE) in three dimensions, we derive the first theoretically-rigorous scheme for learning the associated Green's function $G$. By exploiting the hierarchical low-rank structure of $G$, we show that one can construct an approximant to $G$ that converges almost surely and achieves a relative error of $\mathcal{O}(\Gamma_\epsilon^{-1/2}\log^3(1/\epsilon)\epsilon)$ using at most $\mathcal{O}(\epsilon^{-6}\log^4(1/\epsilon))$ input-output training pairs with high probability, for any $0<\epsilon<1$. The quantity $0<\Gamma_\epsilon\leq 1$ characterizes the quality of the training dataset. Along the way, we extend the randomized singular value decomposition algorithm for learning matrices to Hilbert--Schmidt operators and characterize the quality of covariance kernels for PDE learning.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司