Given an undirected unweighted graph $G = (V, E)$ on $n$ vertices and $m$ edges, a subgraph $H\subseteq G$ is a spanner of $G$ with stretch function $f: \mathbb{R}_+ \rightarrow \mathbb{R}_+$, iff for every pair $s, t$ of vertices in $V$, $\textsf{dist}_{H}(s, t)\le f(\textsf{dist}_{G}(s, t))$. When $f(d) = d + o(d)$, $H$ is called a sublinear additive spanner; when $f(d) = d + o(n)$, $H$ is called an additive spanner, and $f(d) - d$ is usually called the additive stretch of $H$. As our primary result, we show that for any constant $\delta>0$ and constant integer $k\geq 2$, every graph on $n$ vertices has a sublinear additive spanner with stretch function $f(d)=d+O(d^{1-1/k})$ and $O\big(n^{1+\frac{1+\delta}{2^{k+1}-1}}\big)$ edges. When $k = 2$, this improves upon the previous spanner construction with stretch function $f(d) = d + O(d^{1/2})$ and $\tilde{O}(n^{1+3/17})$ edges [Chechik, 2013]; for any constant integer $k\geq 3$, this improves upon the previous spanner construction with stretch function $f(d) = d + O(d^{1-1/k})$ and $O\bigg(n^{1+\frac{(3/4)^{k-2}}{7 - 2\cdot (3/4)^{k-2}}}\bigg)$ edges [Pettie, 2009]. Most importantly, the size of our spanners almost matches the lower bound of $\Omega\big(n^{1+\frac{1}{2^{k+1}-1}}\big)$ [Abboud, Bodwin, Pettie, 2017]. As our second result, we show a new construction of additive spanners with stretch $O(n^{0.403})$ and $O(n)$ edges, which slightly improves upon the previous stretch bound of $O(n^{3/7+\epsilon})$ achieved by linear-size spanners [Bodwin and Vassilevska Williams, 2016]. An additional advantage of our spanner is that it admits a subquadratic construction runtime of $\tilde{O}(m + n^{13/7})$, while the previous construction in [Bodwin and Vassilevska Williams, 2016] requires all-pairs shortest paths computation which takes $O(\min\{mn, n^{2.373}\})$ time.
A set $S\subseteq V$ of vertices of a graph $G$ is a \emph{$c$-clustered set} if it induces a subgraph with components of order at most $c$ each, and $\alpha_c(G)$ denotes the size of a largest $c$-clustered set. For any graph $G$ on $n$ vertices and treewidth $k$, we show that $\alpha_c(G) \geq \frac{c}{c+k+1}n$, which improves a result of Wood [arXiv:2208.10074, August 2022], while we construct $n$-vertex graphs $G$ of treewidth~$k$ with $\alpha_c(G)\leq \frac{c}{c+k}n$. In the case $c\leq 2$ or $k=1$ we prove the better lower bound $\alpha_c(G) \geq \frac{c}{c+k}n$, which settles a conjecture of Chappell and Pelsmajer [Electron.\ J.\ Comb., 2013] and is best-possible. Finally, in the case $c=3$ and $k=2$, we show $\alpha_c(G) \geq \frac{5}{9}n$ and which is best-possible.
Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.
At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$, for an appropriate definition of degeneracy. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether, even for a more restrictive notion of degeneracy, this XP-delay algorithm parameterized by $d$ could be made FPT-delay parameterized by $d$ and the maximum degree $\Delta$, i.e., an algorithm with delay $f(d,\Delta)\cdot n^{O(1)}$ for some computable function $f$. We answer this question in the affirmative whenever the hypergraph corresponds to the closed neighborhoods of a graph, i.e., we show that the intimately related problem of enumerating minimal dominating sets in graphs admits an FPT-delay algorithm parameterized by the degeneracy and the maximum degree.
We consider two simple asynchronous opinion dynamics on arbitrary graphs where every node $u$ has an initial value $\xi_u(0)$. In the first process, the NodeModel, at each time step $t\ge 0$, a random node $u$ and a random sample of $k$ of its neighbours $v_1,v_2,\cdots,v_k$ are selected. Then, $u$ updates its current value $\xi_u(t)$ to $\xi_u(t+1) = \alpha \xi_u(t) + \frac{(1-\alpha)}{k} \sum_{i=1}^k \xi_{v_i}(t)$, where $\alpha \in (0,1)$ and $k\ge 1$ are parameters of the process. In the second process, the EdgeModel, at each step a random pair of adjacent nodes $(u,v)$ is selected, and then node $u$ updates its value equivalently to the NodeModel with $k=1$ and $v$ as the selected neighbour. For both processes, the values of all nodes converge to $F$, a random variable depending on the random choices made in each step. For the NodeModel and regular graphs, and for the EdgeModel and arbitrary graphs, the expectation of $F$ is the average of the initial values $\frac{1}{n}\sum_{u\in V} \xi_u(0)$. For the NodeModel and non-regular graphs, the expectation of $F$ is the degree-weighted average of the initial values. Our results are two-fold. We consider the concentration of $F$ and show tight bounds on the variance of $F$ for regular graphs. We show that, when the initial values do not depend on the number of nodes, then the variance is negligible, hence the nodes are able to estimate the initial average of the node values. Interestingly, this variance does not depend on the graph structure. For the proof we introduce a duality between our processes and a process of two correlated random walks. We also analyse the convergence time for both models and for arbitrary graphs, showing bounds on the time $T_\varepsilon$ required to make all node values `$\varepsilon$-close' to each other. Our bounds are asymptotically tight under assumptions on the distribution of the initial values.
In this paper, we propose a new adaptive cross algorithm for computing a low tubal rank approximation of third-order tensors, with less memory and lower computational complexity than the truncated tensor SVD (t-SVD). This makes it applicable for decomposing large-scale tensors. We conduct numerical experiments on synthetic and real-world datasets to confirm the efficiency and feasibility of the proposed algorithm. The simulation results show more than one order of magnitude acceleration in the computation of low tubal rank (t-SVD) for large-scale tensors. An application to pedestrian attribute recognition is also presented.
Let $G$ be a graph on $n$ vertices of maximum degree $\Delta$. We show that, for any $\delta > 0$, the down-up walk on independent sets of size $k \leq (1-\delta)\alpha_c(\Delta)n$ mixes in time $O_{\Delta,\delta}(k\log{n})$, thereby resolving a conjecture of Davies and Perkins in an optimal form. Here, $\alpha_{c}(\Delta)n$ is the NP-hardness threshold for the problem of counting independent sets of a given size in a graph on $n$ vertices of maximum degree $\Delta$. Our mixing time has optimal dependence on $k,n$ for the entire range of $k$; previously, even polynomial mixing was not known. In fact, for $k = \Omega_{\Delta}(n)$ in this range, we establish a log-Sobolev inequality with optimal constant $\Omega_{\Delta,\delta}(1/n)$. At the heart of our proof are three new ingredients, which may be of independent interest. The first is a method for lifting $\ell_\infty$-independence from a suitable distribution on the discrete cube -- in this case, the hard-core model -- to the slice by proving stability of an Edgeworth expansion using a multivariate zero-free region for the base distribution. The second is a generalization of the Lee-Yau induction to prove log-Sobolev inequalities for distributions on the slice with considerably less symmetry than the uniform distribution. The third is a sharp decomposition-type result which provides a lossless comparison between the Dirichlet form of the original Markov chain and that of the so-called projected chain in the presence of a contractive coupling.
View synchronisation is an important component of many modern Byzantine Fault Tolerant State Machine Replication (SMR) systems in the partial synchrony model. Roughly, the efficiency of view synchronisation is measured as the word complexity and latency required for moving from being synchronised in a view of one correct leader to being synchronised in the view of the next correct leader. The efficiency of view synchronisation has emerged as a major bottleneck in the efficiency of SMR systems as a whole. A key question remained open: Do there exist view synchronisation protocols with asymptotically optimal quadratic worst-case word complexity that also obtain linear message complexity and responsiveness when moving between consecutive correct leaders? We answer this question affirmatively with a new view synchronisation protocol for partial synchrony assuming minimal clock synchronisation, called \emph{Fever}. If $n$ is the number of processors and $t$ is the largest integer $<n/3$, then Fever has resilience $t$, and in all executions with at most $0\leq f\leq t$ Byzantine parties and network delays of at most $\delta \leq \Delta$ after $GST$ (where $f$ and $\delta$ are unknown), Fever has worst-case word complexity $O(fn+n)$ and worst-case latency $O(\Delta f + \delta)$.
In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.
Given $\mathbf A \in \mathbb{R}^{n \times n}$ with entries bounded in magnitude by $1$, it is well-known that if $S \subset [n] \times [n]$ is a uniformly random subset of $\tilde{O} (n/\epsilon^2)$ entries, and if ${\mathbf A}_S$ equals $\mathbf A$ on the entries in $S$ and is zero elsewhere, then $\|\mathbf A - \frac{n^2}{s} \cdot {\mathbf A}_S\|_2 \le \epsilon n$ with high probability, where $\|\cdot\|_2$ is the spectral norm. We show that for positive semidefinite (PSD) matrices, no randomness is needed at all in this statement. Namely, there exists a fixed subset $S$ of $\tilde{O} (n/\epsilon^2)$ entries that acts as a universal sparsifier: the above error bound holds simultaneously for every bounded entry PSD matrix $\mathbf A \in \mathbb{R}^{n \times n}$. One can view this result as a significant extension of a Ramanujan expander graph, which sparsifies any bounded entry PSD matrix, not just the all ones matrix. We leverage the existence of such universal sparsifiers to give the first deterministic algorithms for several central problems related to singular value computation that run in faster than matrix multiplication time. We also prove universal sparsification bounds for non-PSD matrices, showing that $\tilde{O} (n/\epsilon^4)$ entries suffices to achieve error $\epsilon \cdot \max(n,\|\mathbf A\|_1)$, where $\|\mathbf A\|_1$ is the trace norm. We prove that this is optimal up to an $\tilde{O} (1/\epsilon^2)$ factor. Finally, we give an improved deterministic spectral approximation algorithm for PSD $\mathbf A$ with entries lying in $\{-1,0,1\}$, which we show is nearly information-theoretically optimal.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.