亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the growing concerns regarding user data privacy, Federated Recommender System (FedRec) has garnered significant attention recently due to its privacy-preserving capabilities. Existing FedRecs generally adhere to a learning protocol in which a central server shares a global recommendation model with clients, and participants achieve collaborative learning by frequently communicating the model's public parameters. Nevertheless, this learning framework has two drawbacks that limit its practical usability: (1) It necessitates a global-sharing recommendation model; however, in real-world scenarios, information related to the recommender model, including its algorithm and parameters, constitutes the platforms' intellectual property. Hence, service providers are unlikely to release such information actively. (2) The communication costs of model parameter transmission are expensive since the model parameters are usually high-dimensional matrices. With the model size increasing, the communication burden will be the bottleneck for such traditional FedRecs. Given the above limitations, this paper introduces a novel parameter transmission-free federated recommendation framework that balances the protection between users' data privacy and platforms' model privacy, namely PTF-FedRec. Specifically, participants in PTF-FedRec collaboratively exchange knowledge by sharing their predictions within a privacy-preserving mechanism. Through this way, the central server can learn a recommender model without disclosing its model parameters or accessing clients' raw data, preserving both the server's model privacy and users' data privacy. Besides, since clients and the central server only need to communicate prediction scores which are just a few real numbers, the overhead is significantly reduced compared to traditional FedRecs. The code is available at\url{//github.com/hi-weiyuan/PTF-FedRec}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · domain shift · Principle · Projection · 情景 ·
2024 年 3 月 24 日

Federated Domain Adaptation (FDA) describes the federated learning (FL) setting where source clients and a server work collaboratively to improve the performance of a target client where limited data is available. The domain shift between the source and target domains, coupled with limited data of the target client, makes FDA a challenging problem, e.g., common techniques such as federated averaging and fine-tuning fail due to domain shift and data scarcity. To theoretically understand the problem, we introduce new metrics that characterize the FDA setting and a theoretical framework with novel theorems for analyzing the performance of server aggregation rules. Further, we propose a novel lightweight aggregation rule, Federated Gradient Projection ($\texttt{FedGP}$), which significantly improves the target performance with domain shift and data scarcity. Moreover, our theory suggests an $\textit{auto-weighting scheme}$ that finds the optimal combinations of the source and target gradients. This scheme improves both $\texttt{FedGP}$ and a simpler heuristic aggregation rule. Extensive experiments verify the theoretical insights and illustrate the effectiveness of the proposed methods in practice.

In the field of Artificial Intelligence, Large Language Models (LLMs) have demonstrated significant advances in user intent understanding and response in a number of specialized domains, including medicine, law, and finance. However, in the unique domain of traditional Chinese medicine (TCM), the performance enhancement of LLMs is challenged by the essential differences between its theories and modern medicine, as well as the lack of specialized corpus resources. In this paper, we aim to construct and organize a professional corpus in the field of TCM, to endow the large model with professional knowledge that is characteristic of TCM theory, and to successfully develop the Qibo model based on LLaMA, which is the first LLM in the field of TCM to undergo a complete training process from pre-training to Supervised Fine-Tuning (SFT). Furthermore, we develop the Qibo-benchmark, a specialized tool for evaluating the performance of LLMs, which is a specialized tool for evaluating the performance of LLMs in the TCM domain. This tool will provide an important basis for quantifying and comparing the understanding and application capabilities of different models in the field of traditional Chinese medicine, and provide guidance for future research directions and practical applications of intelligent assistants for traditional Chinese medicine. Finally, we conducted sufficient experiments to prove that Qibo has good performance in the field of traditional Chinese medicine.

Exoskeleton locomotion must be robust while being adaptive to different users with and without payloads. To address these challenges, this work introduces a data-driven predictive control (DDPC) framework to synthesize walking gaits for lower-body exoskeletons, employing Hankel matrices and a state transition matrix for its data-driven model. The proposed approach leverages DDPC through a multi-layer architecture. At the top layer, DDPC serves as a planner employing Hankel matrices and a state transition matrix to generate a data-driven model that can learn and adapt to varying users and payloads. At the lower layer, our method incorporates inverse kinematics and passivity-based control to map the planned trajectory from DDPC into the full-order states of the lower-body exoskeleton. We validate the effectiveness of this approach through numerical simulations and hardware experiments conducted on the Atalante lower-body exoskeleton with different payloads. Moreover, we conducted a comparative analysis against the model predictive control (MPC) framework based on the reduced-order linear inverted pendulum (LIP) model. Through this comparison, the paper demonstrates that DDPC enables robust bipedal walking at various velocities while accounting for model uncertainties and unknown perturbations.

There has been a significant societal push towards sustainable practices, including in computing. Modern interactive workloads such as geo-distributed web-services exhibit various spatiotemporal and performance flexibility, enabling the possibility to adapt the location, time, and intensity of processing to align with the availability of renewable and low-carbon energy. An example is a web application hosted across multiple cloud regions, each with varying carbon intensity based on their local electricity mix. Distributed load-balancing enables the exploitation of low-carbon energy through load migration across regions, reducing web applications carbon footprint. In this paper, we present CASPER, a carbon-aware scheduling and provisioning system that primarily minimizes the carbon footprint of distributed web services while also respecting their Service Level Objectives (SLO). We formulate CASPER as an multi-objective optimization problem that considers both the variable carbon intensity and latency constraints of the network. Our evaluation reveals the significant potential of CASPER in achieving substantial reductions in carbon emissions. Compared to baseline methods, CASPER demonstrates improvements of up to 70% with no latency performance degradation.

Target Sound Extraction (TSE) focuses on the problem of separating sources of interest, indicated by a user's cue, from the input mixture. Most existing solutions operate in an offline fashion and are not suited to the low-latency causal processing constraints imposed by applications in live-streamed content such as augmented hearing. We introduce a family of context-aware low-latency causal TSE models suitable for real-time processing. First, we explore the utility of context by providing the TSE model with oracle information about what sound classes make up the input mixture, where the objective of the model is to extract one or more sources of interest indicated by the user. Since the practical applications of oracle models are limited due to their assumptions, we introduce a composite multi-task training objective involving separation and classification losses. Our evaluation involving single- and multi-source extraction shows the benefit of using context information in the model either by means of providing full context or via the proposed multi-task training loss without the need for full context information. Specifically, we show that our proposed model outperforms size- and latency-matched Waveformer, a state-of-the-art model for real-time TSE.

NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.

In the Industrial Internet of Things (IoT), a large amount of data will be generated every day. Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models, thus the federated learning, a distributed machine learning paradigm that protects data privacy, has been widely used in IoT. However, in practical federated learning, the data distributions usually have large differences across devices, and the heterogeneity of data will deteriorate the performance of the model. Moreover, federated learning in IoT usually has a large number of devices involved in training, and the limited communication resource of cloud servers become a bottleneck for training. To address the above issues, in this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework, which can mitigate the impact of data heterogeneity, and can be deployed at lage scale in IoT. To address the effect of data heterogeneity, we use an incremental subgradient optimization algorithm in each ring cluster to improve the generalization ability of the ring cluster models. Our extensive experiments show that our approach can effectively mitigate the impact of data heterogeneity and alleviate the communication bottleneck in cloud servers.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司