Self-supervised monocular depth estimation has garnered considerable attention for its applications in autonomous driving and robotics. While recent methods have made strides in leveraging techniques like the Self Query Layer (SQL) to infer depth from motion, they often overlook the potential of strengthening pose information. In this paper, we introduce SPIdepth, a novel approach that prioritizes enhancing the pose network for improved depth estimation. Building upon the foundation laid by SQL, SPIdepth emphasizes the importance of pose information in capturing fine-grained scene structures. By enhancing the pose network's capabilities, SPIdepth achieves remarkable advancements in scene understanding and depth estimation. Experimental results on benchmark datasets such as KITTI, Cityscapes, and Make3D showcase SPIdepth's state-of-the-art performance, surpassing previous methods by significant margins. Specifically, SPIdepth tops the self-supervised KITTI benchmark. Additionally, SPIdepth achieves the lowest AbsRel (0.029), SqRel (0.069), and RMSE (1.394) on KITTI, establishing new state-of-the-art results. On Cityscapes, SPIdepth shows improvements over SQLdepth of 21.7% in AbsRel, 36.8% in SqRel, and 16.5% in RMSE, even without using motion masks. On Make3D, SPIdepth in zero-shot outperforms all other models. Remarkably, SPIdepth achieves these results using only a single image for inference, surpassing even methods that utilize video sequences for inference, thus demonstrating its efficacy and efficiency in real-world applications. Our approach represents a significant leap forward in self-supervised monocular depth estimation, underscoring the importance of strengthening pose information for advancing scene understanding in real-world applications.
Vision-based Semantic Scene Completion (SSC) has gained much attention due to its widespread applications in various 3D perception tasks. Existing sparse-to-dense approaches typically employ shared context-independent queries across various input images, which fails to capture distinctions among them as the focal regions of different inputs vary and may result in undirected feature aggregation of cross-attention. Additionally, the absence of depth information may lead to points projected onto the image plane sharing the same 2D position or similar sampling points in the feature map, resulting in depth ambiguity. In this paper, we present a novel context and geometry aware voxel transformer. It utilizes a context aware query generator to initialize context-dependent queries tailored to individual input images, effectively capturing their unique characteristics and aggregating information within the region of interest. Furthermore, it extend deformable cross-attention from 2D to 3D pixel space, enabling the differentiation of points with similar image coordinates based on their depth coordinates. Building upon this module, we introduce a neural network named CGFormer to achieve semantic scene completion. Simultaneously, CGFormer leverages multiple 3D representations (i.e., voxel and TPV) to boost the semantic and geometric representation abilities of the transformed 3D volume from both local and global perspectives. Experimental results demonstrate that CGFormer achieves state-of-the-art performance on the SemanticKITTI and SSCBench-KITTI-360 benchmarks, attaining a mIoU of 16.87 and 20.05, as well as an IoU of 45.99 and 48.07, respectively. Remarkably, CGFormer even outperforms approaches employing temporal images as inputs or much larger image backbone networks.
Stock market prediction has remained an extremely challenging problem for many decades owing to its inherent high volatility and low information noisy ratio. Existing solutions based on machine learning or deep learning demonstrate superior performance by employing a single model trained on the entire stock dataset to generate predictions across all types of stocks. However, due to the significant variations in stock styles and market trends, a single end-to-end model struggles to fully capture the differences in these stylized stock features, leading to relatively inaccurate predictions for all types of stocks. In this paper, we present MIGA, a novel Mixture of Expert with Group Aggregation framework designed to generate specialized predictions for stocks with different styles by dynamically switching between distinct style experts. To promote collaboration among different experts in MIGA, we propose a novel inner group attention architecture, enabling experts within the same group to share information and thereby enhancing the overall performance of all experts. As a result, MIGA significantly outperforms other end-to-end models on three Chinese Stock Index benchmarks including CSI300, CSI500, and CSI1000. Notably, MIGA-Conv reaches 24 % excess annual return on CSI300 benchmark, surpassing the previous state-of-the-art model by 8% absolute. Furthermore, we conduct a comprehensive analysis of mixture of experts for stock market prediction, providing valuable insights for future research.
Ego-centric queries, focusing on a target vertex and its direct neighbors, are essential for various applications. Enabling such queries on graphs owned by mutually distrustful data providers, without breaching privacy, holds promise for more comprehensive results. In this paper, we propose GORAM, a graph-oriented data structure that enables efficient ego-centric queries on federated graphs with strong privacy guarantees. GORAM is built upon secure multi-party computation (MPC) and ensures that no single party can learn any sensitive information about the graph data or the querying keys during the process. However, achieving practical performance with privacy guaranteed presents a challenge. To overcome this, GORAM is designed to partition the federated graph and construct an Oblivious RAM(ORAM)-inspired index atop these partitions. This design enables each ego-centric query to process only a single partition, which can be accessed fast and securely. To evaluate the performance of GORAM, we developed a prototype querying engine on a real-world MPC framework. We conduct a comprehensive evaluation with five commonly used queries on both synthetic and real-world graphs. Our evaluation shows that all benchmark queries can be completed in just 58.1 milliseconds to 35.7 seconds, even on graphs with up to 41.6 million vertices and 1.4 billion edges. To the best of our knowledge, this represents the first instance of processing billion-scale graphs with practical performance on MPC.
The ability of a peer-to-peer (P2P) system to effectively host decentralized applications often relies on the availability of a peer-sampling service, which provides each participant with a random sample of other peers. Despite the practical effectiveness of existing peer samplers, their ability to produce random samples within a reasonable time frame remains poorly understood from a theoretical standpoint. This paper contributes to bridging this gap by introducing PeerSwap, a peer-sampling protocol with provable randomness guarantees. We establish execution time bounds for PeerSwap, demonstrating its ability to scale effectively with the network size. We prove that PeerSwap maintains the fixed structure of the communication graph while allowing sequential peer position swaps within this graph. We do so by showing that PeerSwap is a specific instance of an interchange process, a renowned model for particle movement analysis. Leveraging this mapping, we derive execution time bounds, expressed as a function of the network size N. Depending on the network structure, this time can be as low as a polylogarithmic function of N, highlighting the efficiency of PeerSwap. We implement PeerSwap and conduct numerical evaluations using regular graphs with varying connectivity and containing up to 32768 (2^15) peers. Our evaluation demonstrates that PeerSwap quickly provides peers with uniform random samples of other peers.
Video-based facial affect analysis has recently attracted increasing attention owing to its critical role in human-computer interaction. Previous studies mainly focus on developing various deep learning architectures and training them in a fully supervised manner. Although significant progress has been achieved by these supervised methods, the longstanding lack of large-scale high-quality labeled data severely hinders their further improvements. Motivated by the recent success of self-supervised learning in computer vision, this paper introduces a self-supervised approach, termed Self-supervised Video Facial Affect Perceiver (SVFAP), to address the dilemma faced by supervised methods. Specifically, SVFAP leverages masked facial video autoencoding to perform self-supervised pre-training on massive unlabeled facial videos. Considering that large spatiotemporal redundancy exists in facial videos, we propose a novel temporal pyramid and spatial bottleneck Transformer as the encoder of SVFAP, which not only largely reduces computational costs but also achieves excellent performance. To verify the effectiveness of our method, we conduct experiments on nine datasets spanning three downstream tasks, including dynamic facial expression recognition, dimensional emotion recognition, and personality recognition. Comprehensive results demonstrate that SVFAP can learn powerful affect-related representations via large-scale self-supervised pre-training and it significantly outperforms previous state-of-the-art methods on all datasets. Code is available at //github.com/sunlicai/SVFAP.
Text-to-SQL technology has become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, we found that the Execution Accuracy (EX), the most promising evaluation metric, still shows a substantial portion of false positives and negatives compared to human evaluation. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our method shows significantly higher agreement with human expert judgments, improving Cohen's kappa from 61 to 78.17. Re-evaluating top-performing models on the Spider and BIRD benchmarks using FLEX reveals substantial shifts in performance rankings, with an average performance decrease of 3.15 due to false positive corrections and an increase of 6.07 from addressing false negatives. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.