This paper shows how an uncertainty-aware, deep neural network can be trained to detect, recognise and localise objects in 2D RGB images, in applications lacking annotated train-ng datasets. We propose a self-supervising teacher-student pipeline, in which a relatively simple teacher classifier, trained with only a few labelled 2D thumbnails, automatically processes a larger body of unlabelled RGB-D data to teach a student network based on a modified YOLOv3 architecture. Firstly, 3D object detection with back projection is used to automatically extract and teach 2D detection and localisation information to the student network. Secondly, a weakly supervised 2D thumbnail classifier, with minimal training on a small number of hand-labelled images, is used to teach object category recognition. Thirdly, we use a Gaussian Process GP to encode and teach a robust uncertainty estimation functionality, so that the student can output confidence scores with each categorization. The resulting student significantly outperforms the same YOLO architecture trained directly on the same amount of labelled data. Our GP-based approach yields robust and meaningful uncertainty estimations for complex industrial object classifications. The end-to-end network is also capable of real-time processing, needed for robotics applications. Our method can be applied to many important industrial tasks, where labelled datasets are typically unavailable. In this paper, we demonstrate an example of detection, localisation, and object category recognition of nuclear mixed-waste materials in highly cluttered and unstructured scenes. This is critical for robotic sorting and handling of legacy nuclear waste, which poses complex environmental remediation challenges in many nuclearised nations.
Neural networks are a group of neurons stacked together in multiple layers to mimic the biological neurons in a human brain. Neural networks have been trained using the backpropagation algorithm based on gradient descent strategy for several decades. Several variants have been developed to improve the backpropagation algorithm. The loss function for the neural network is optimized through backpropagation, but several local minima exist in the manifold of the constructed neural network. We obtain several solutions matching the minima. The gradient descent strategy cannot avoid the problem of local minima and gets stuck in the minima due to the initialization. Particle swarm optimization (PSO) was proposed to select the best local minima among the search space of the loss function. The search space is limited to the instantiated particles in the PSO algorithm, and sometimes it cannot select the best solution. In the proposed approach, we overcome the problem of gradient descent and the limitation of the PSO algorithm by training individual neurons separately, capable of collectively solving the problem as a group of neurons forming a network. Our code and data are available at //github.com/dipkmr/train-nn-wobp/
Delay Tolerant Networking (DTN) aims to address a myriad of significant networking challenges that appear in time-varying settings, such as mobile and satellite networks, wherein changes in network topology are frequent and often subject to environmental constraints. Within this paradigm, routing problems are often solved by extending classical graph-theoretic path finding algorithms, such as the Bellman-Ford or Floyd-Warshall algorithms, to the time-varying setting; such extensions are simple to understand, but they have strict optimality criteria and can exhibit non-polynomial scaling. Acknowledging this, we study time-varying shortest path problems on metric graphs whose vertices are traced by semi-algebraic curves. As an exemplary application, we establish a polynomial upper bound on the number of topological critical events encountered by a set of $n$ satellites moving along elliptic curves in low Earth orbit (per orbital period). Experimental evaluations on networks derived from STARLINK satellite TLE's demonstrate that not only does this geometric framework allow for routing schemes between satellites requiring recomputation an order of magnitude less than graph-based methods, but it also demonstrates metric spanner properties exist in metric graphs derived from real-world data, opening the door for broader applications of geometric DTN routing.
This paper deals with a time-split explicit/implicit approach for solving a two-dimensional hydrodynamic flow model with appropriate initial and boundary conditions. The time-split technique is employed to upwind the convection term and to treat the friction slope so that the numerical oscillations and stability are well controlled. A suitable time step restriction for stability and convergence accurate of the new algorithm is established using the $L^{\infty}(0,T; L^{2})$-norm. Under a time step requirement, some numerical examples confirm the theoretical studies and suggest that the proposed computational technique is spatial fourth-order accurate and temporal second-order convergent. An application to floods observed in Cameroon far north region is considered and discussed.
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Motivated by the Iowa Fluoride Study (IFS) dataset, which comprises zero-inflated multi-level ordinal responses on tooth fluorosis, we develop an estimation scheme leveraging generalized estimating equations (GEEs) and James-Stein shrinkage. Previous analyses of this cohort study primarily focused on caries (count response) or employed a Bayesian approach to the ordinal fluorosis outcome. This study is based on the expanded dataset that now includes observations for age 23, whereas earlier works were restricted to ages 9, 13, and/or 17 according to the participants' ages at the time of measurement. The adoption of a frequentist perspective enhances the interpretability to a broader audience. Over a choice of several covariance structures, separate models are formulated for the presence (zero versus non-zero score) and severity (non-zero ordinal scores) of fluorosis, which are then integrated through shared regression parameters. This comprehensive framework effectively identifies risk or protective effects of dietary and non-dietary factors on dental fluorosis.
This study presents a novel representation learning model tailored for dynamic networks, which describes the continuously evolving relationships among individuals within a population. The problem is encapsulated in the dimension reduction topic of functional data analysis. With dynamic networks represented as matrix-valued functions, our objective is to map this functional data into a set of vector-valued functions in a lower-dimensional learning space. This space, defined as a metric functional space, allows for the calculation of norms and inner products. By constructing this learning space, we address (i) attribute learning, (ii) community detection, and (iii) link prediction and recovery of individual nodes in the dynamic network. Our model also accommodates asymmetric low-dimensional representations, enabling the separate study of nodes' regulatory and receiving roles. Crucially, the learning method accounts for the time-dependency of networks, ensuring that representations are continuous over time. The functional learning space we define naturally spans the time frame of the dynamic networks, facilitating both the inference of network links at specific time points and the reconstruction of the entire network structure without direct observation. We validated our approach through simulation studies and real-world applications. In simulations, we compared our methods link prediction performance to existing approaches under various data corruption scenarios. For real-world applications, we examined a dynamic social network replicated across six ant populations, demonstrating that our low-dimensional learning space effectively captures interactions, roles of individual ants, and the social evolution of the network. Our findings align with existing knowledge of ant colony behavior.
A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.
We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.
Next-generation reservoir computing (NG-RC) has attracted much attention due to its excellent performance in spatio-temporal forecasting of complex systems and its ease of implementation. This paper shows that NG-RC can be encoded as a kernel ridge regression that makes training efficient and feasible even when the space of chosen polynomial features is very large. Additionally, an extension to an infinite number of covariates is possible, which makes the methodology agnostic with respect to the lags into the past that are considered as explanatory factors, as well as with respect to the number of polynomial covariates, an important hyperparameter in traditional NG-RC. We show that this approach has solid theoretical backing and good behavior based on kernel universality properties previously established in the literature. Various numerical illustrations show that these generalizations of NG-RC outperform the traditional approach in several forecasting applications.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.